Skip to content

Hooked model

ExtractionConfig dataclass

Configuration of the extraction of the activations of the model. It store what activations you want to extract from the model.

Parameters:

Name Type Description Default
extract_resid_in bool

if True, extract the input of the residual stream

False
extract_resid_mid bool

if True, extract the output of the intermediate stream

False
extract_resid_out bool

if True, extract the output of the residual stream

False
extract_resid_in_post_layernorm(bool)

if True, extract the input of the residual stream after the layernorm

required
extract_attn_pattern bool

if True, extract the attention pattern of the attn

False
extract_avg_attn_pattern bool

if True, extract the average attention pattern of the model

False
extract_values_vectors_projected bool

if True, extract the values vectors projected of the model

False
extract_avg_values_vectors_projected bool

if True, extract the average values vectors projected of the model

False
extract_values bool

if True, extract the values of the attention

False
extract_head_out bool

if True, extract the output of the heads [DEPRECATED]

False
extract_attn_out bool

if True, extract the output of the attention of the attn_heads passed

False
extract_attn_in bool

if True, extract the input of the attention of the attn_heads passed

False
save_input_ids bool

if True, save the input_ids in the cache

False
extract_avg bool

if True, extract the average of the activations

False
attn_heads Union[list[dict], Literal['all']]

list of dictionaries with the layer and head to extract the attention pattern or 'all' to

'all'
Source code in easyroutine/interpretability/hooked_model.py
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
@dataclass
class ExtractionConfig:
    """
    Configuration of the extraction of the activations of the model. It store what activations you want to extract from the model.

    Arguments:
        extract_resid_in (bool): if True, extract the input of the residual stream
        extract_resid_mid (bool): if True, extract the output of the intermediate stream
        extract_resid_out (bool): if True, extract the output of the residual stream
        extract_resid_in_post_layernorm(bool): if True, extract the input of the residual stream after the layernorm
        extract_attn_pattern (bool): if True, extract the attention pattern of the attn
        extract_avg_attn_pattern (bool): if True, extract the average attention pattern of the model
        extract_values_vectors_projected (bool): if True, extract the values vectors projected of the model
        extract_avg_values_vectors_projected (bool): if True, extract the average values vectors projected of the model
        extract_values (bool): if True, extract the values of the attention
        extract_head_out (bool): if True, extract the output of the heads [DEPRECATED]
        extract_attn_out (bool): if True, extract the output of the attention of the attn_heads passed
        extract_attn_in (bool): if True, extract the input of the attention of the attn_heads passed
        save_input_ids (bool): if True, save the input_ids in the cache
        extract_avg (bool): if True, extract the average of the activations
        attn_heads (Union[list[dict], Literal["all"]]): list of dictionaries with the layer and head to extract the attention pattern or 'all' to
    """

    extract_resid_in: bool = False
    extract_resid_mid: bool = False
    extract_resid_out: bool = False
    extract_resid_in_post_layernorm: bool = False
    extract_attn_pattern: bool = False
    extract_avg_attn_pattern: bool = False
    extract_values_vectors_projected: bool = False
    extract_avg_values_vectors_projected: bool = False
    extract_values: bool = False
    extract_head_out: bool = False
    extract_attn_out: bool = False
    extract_attn_in: bool = False
    save_input_ids: bool = False
    extract_avg: bool = False
    attn_heads: Union[list[dict], Literal["all"]] = "all"

    def is_not_empty(self):
        """
        Return True if at least one of the attributes is True, False otherwise, i.e. if the model should extract something!
        """
        return any(
            [
                self.extract_resid_in,
                self.extract_resid_mid,
                self.extract_resid_out,
                self.extract_attn_pattern,
                self.extract_avg_attn_pattern,
                self.extract_values_vectors_projected,
                self.extract_avg_values_vectors_projected,
                self.extract_values,
                self.extract_head_out,
                self.extract_attn_out,
                self.extract_attn_in,
                self.save_input_ids,
                self.extract_avg,
            ]
        )

is_not_empty()

Return True if at least one of the attributes is True, False otherwise, i.e. if the model should extract something!

Source code in easyroutine/interpretability/hooked_model.py
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
def is_not_empty(self):
    """
    Return True if at least one of the attributes is True, False otherwise, i.e. if the model should extract something!
    """
    return any(
        [
            self.extract_resid_in,
            self.extract_resid_mid,
            self.extract_resid_out,
            self.extract_attn_pattern,
            self.extract_avg_attn_pattern,
            self.extract_values_vectors_projected,
            self.extract_avg_values_vectors_projected,
            self.extract_values,
            self.extract_head_out,
            self.extract_attn_out,
            self.extract_attn_in,
            self.save_input_ids,
            self.extract_avg,
        ]
    )

HookedModel

This class is a wrapper around the huggingface model that allows to extract the activations of the model. It is support advanced mechanistic intepretability methods like ablation, patching, etc.

Source code in easyroutine/interpretability/hooked_model.py
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
class HookedModel:
    """
    This class is a wrapper around the huggingface model that allows to extract the activations of the model. It is support
    advanced mechanistic intepretability methods like ablation, patching, etc.
    """

    def __init__(self, config: HookedModelConfig, log_file_path: Optional[str] = None):
        self.logger = Logger(
            logname="HookedModel",
            level="info",
            log_file_path=log_file_path,
        )

        self.config = config
        self.hf_model, self.hf_language_model, self.model_config = (
            ModelFactory.load_model(
                model_name=config.model_name,
                device_map=config.device_map,
                torch_dtype=config.torch_dtype,
                attn_implementation="eager"
                if config.attn_implementation == "custom_eager"
                else config.attn_implementation,
            )
        )
        self.base_model = None
        self.module_wrapper_manager = ModuleWrapperManager(model =  self.hf_model)

        tokenizer, processor = TokenizerFactory.load_tokenizer(
            model_name=config.model_name,
            torch_dtype=config.torch_dtype,
            device_map=config.device_map,
        )
        self.hf_tokenizer = tokenizer
        self.input_handler = InputHandler(model_name=config.model_name)
        if processor is True:
            self.processor = tokenizer
            self.text_tokenizer = self.processor.tokenizer  # type: ignore
        else:
            self.processor = None
            self.text_tokenizer = tokenizer

        # self.hf_language_model = extract_language_model(self.hf_model)

        self.first_device = next(self.hf_model.parameters()).device
        device_num = torch.cuda.device_count()
        self.logger.info(
            f"Model loaded in {device_num} devices. First device: {self.first_device}",
            std_out=True,
        )
        self.act_type_to_hook_name = {
            "resid_in": self.model_config.residual_stream_input_hook_name,
            "resid_out": self.model_config.residual_stream_hook_name,
            "resid_mid": self.model_config.intermediate_stream_hook_name,
            "attn_out": self.model_config.attn_out_hook_name,
            "attn_in": self.model_config.attn_in_hook_name,
            "values": self.model_config.attn_value_hook_name,
            # Add other act_types if needed
        }
        self.additional_hooks = []
        self.assert_all_modules_exist()

        if self.config.attn_implementation == "custom_eager":
            self.logger.info(
                """
                            The model is using the custom eager attention implementation that support attention matrix hooks because I get config.attn_impelemntation == 'custom_eager'. If you don't want this, you can call HookedModel.restore_original_modules. 
                            However, we reccomend using this implementation since the base one do not contains attention matrix hook resulting in unexpected behaviours. 
                            """,
                std_out=True,
            )
            self.set_custom_modules()

    def __repr__(self):
        return f"""HookedModel(model_name={self.config.model_name}):
        {self.hf_model.__repr__()}
    """

    @classmethod
    def from_pretrained(cls, model_name: str, **kwargs):
        return cls(HookedModelConfig(model_name=model_name, **kwargs))

    def assert_module_exists(self, component: str):
        # Remove '.input' or '.output' from the component
        component = component.replace(".input", "").replace(".output", "")

        # Check if '{}' is in the component, indicating layer indexing
        if "{}" in component:
            for i in range(0, self.model_config.num_hidden_layers):
                attr_name = component.format(i)

                try:
                    get_attribute_by_name(self.hf_model, attr_name)
                except AttributeError:
                    try:
                        if attr_name in self.module_wrapper_manager:
                            self.set_custom_modules()
                            get_attribute_by_name(self.hf_model, attr_name)
                            self.restore_original_modules()
                    except AttributeError:
                        raise ValueError(
                            f"Component '{attr_name}' does not exist in the model. Please check the model configuration."
                        )
        else:
            try:
                get_attribute_by_name(self.hf_model, component)
            except AttributeError:
                raise ValueError(
                    f"Component '{component}' does not exist in the model. Please check the model configuration."
                )

    def assert_all_modules_exist(self):
        # get the list of all attributes of model_config
        all_attributes = [attr_name for attr_name in self.model_config.__dict__.keys()]
        # save just the attributes that have "hook" in the name
        hook_attributes = [
            attr_name for attr_name in all_attributes if "hook" in attr_name
        ]
        for hook_attribute in hook_attributes:
            self.assert_module_exists(getattr(self.model_config, hook_attribute))

    def set_custom_modules(self):
        self.logger.info("Setting custom modules.", std_out=True)
        self.module_wrapper_manager.substitute_attention_module(self.hf_model)

    def restore_original_modules(self):
        self.logger.info("Restoring original modules.", std_out=True)
        self.module_wrapper_manager.restore_original_attention_module(self.hf_model)

    def use_full_model(self):

        if self.processor is not None:
            self.logger.info("Using full model capabilities", std_out=True)
        else:
            if self.base_model is not None:
                self.hf_model = self.base_model
            self.logger.info("Using full text only model capabilities", std_out=True)

    def use_language_model_only(self):
        if self.hf_language_model is None:
            self.logger.warning(
                "The model does not have a separate language model that can be used",
                std_out=True,
            )
        else:
            self.base_model = self.hf_model 
            self.hf_model = self.hf_language_model
            self.logger.info("Using only language model capabilities", std_out=True)

    def get_tokenizer(self):
        return self.hf_tokenizer

    def get_text_tokenizer(self):
        r"""
        If the tokenizer is a processor, return just the tokenizer. If the tokenizer is a tokenizer, return the tokenizer

        Args:
            None

        Returns:
            tokenizer: the tokenizer of the model
        """
        if self.processor is not None:
            if not hasattr(self.processor, "tokenizer"):
                raise ValueError("The processor does not have a tokenizer")
            return self.processor.tokenizer  # type: ignore
        return self.hf_tokenizer

    def get_processor(self):
        r"""
        Return the processor of the model (None if the model does not have a processor, i.e. text only model)

        Args:
            None

        Returns:
            processor: the processor of the model
        """
        if self.processor is None:
            raise ValueError("The model does not have a processor")
        return self.processor

    def eval(self):
        r"""
        Set the model in evaluation mode
        """
        self.hf_model.eval()

    def device(self):
        r"""
        Return the device of the model. If the model is in multiple devices, it will return the first device

        Args:
            None

        Returns:
            device: the device of the model
        """
        return self.first_device

    def register_forward_hook(self, component: str, hook_function: Callable):
        r"""
        Add a new hook to the model. The hook will be called in the forward pass of the model.

        Args:
            component (str): the component of the model where the hook will be added.
            hook_function (Callable): the function that will be called in the forward pass of the model. The function must have the following signature:
                def hook_function(module, input, output):
                    pass

        Returns:
            None

        Examples:
            >>> def hook_function(module, input, output):
            >>>     # your code here
            >>>     pass
            >>> model.register_forward_hook("model.layers[0].self_attn", hook_function)
        """
        self.additional_hooks.append(
            {
                "component": component,
                "intervention": hook_function,
            }
        )

    def to_string_tokens(
        self,
        tokens: Union[list, torch.Tensor],
    ):
        r"""
        Transform a list or a tensor of tokens in a list of string tokens.

        Args:
            tokens (Union[list, torch.Tensor]): the tokens to transform in string tokens

        Returns:
            string_tokens (list): the list of string tokens

        Examples:
            >>> tokens = [101, 1234, 1235, 102]
            >>> model.to_string_tokens(tokens)
            ['[CLS]', 'hello', 'world', '[SEP]']
        """
        if isinstance(tokens, torch.Tensor):
            if tokens.dim() == 1:
                tokens = tokens.tolist()
            else:
                tokens = tokens.squeeze().tolist()
        string_tokens = []
        for tok in tokens:
            string_tokens.append(self.hf_tokenizer.decode(tok))  # type: ignore
        return string_tokens

    def create_hooks(
        self,
        inputs,
        cache: ActivationCache,
        token_index: List,
        token_dict: Dict,
        # string_tokens: List[str],
        extraction_config: ExtractionConfig = ExtractionConfig(),
        patching_queries: Optional[Union[dict, pd.DataFrame]] = None,
        ablation_queries: Optional[Union[dict, pd.DataFrame]] = None,
        batch_idx: Optional[int] = None,
        external_cache: Optional[ActivationCache] = None,
    ):
        r"""
        Create the hooks to extract the activations of the model. The hooks will be added to the model and will be called in the forward pass of the model.

        Args:
            inputs (dict): dictionary with the inputs of the model (input_ids, attention_mask, pixel_values ...)
            cache (ActivationCache): dictionary where the activations of the model will be saved
            extracted_token_position (list[str]): list of tokens to extract the activations from (["last", "end-image", "start-image", "first"])
            string_tokens (list[str]): list of string tokens
            split_positions (Optional[list[int]]): list of split positions of the tokens
            attn_heads (Union[list[dict], Literal["all"]]): list of dictionaries with the layer and head to extract the attention pattern or 'all' to
            extract_attn_pattern (bool): if True, extract the attention pattern of the attn_heads passed
            extract_attn_out (bool): if True, extract the output of the attention of the attn_heads passed
            extract_attn_in (bool): if True, extract the input of the attention of the attn_heads passed
            extract_avg_attn_pattern (bool): if True, extract the average attention pattern of the model
            extract_avg_values_vectors_projected (bool): if True, extract the average values vectors projected of the model
            extract_resid_in (bool): if True, extract the input of the residual stream
            extract_resid_out (bool): if True, extract the output of the residual stream
            extract_values (bool): if True, extract the values of the attention
            extract_resid_mid (bool): if True, extract the output of the intermediate stream
            save_input_ids (bool): if True, save the input_ids in the cache
            extract_head_out (bool): if True, extract the output of the heads [DEPRECATED]
            extract_values_vectors_projected (bool): if True, extract the values vectors projected of the model
            extract_avg (bool): if True, extract the average of the activations
            ablation_queries (Optional[Union[dict, pd.DataFrame]]): dictionary or dataframe with the ablation queries to perform during forward pass
            patching_queries (Optional[Union[dict, pd.DataFrame]]): dictionary or dataframe with the patching queries to perform during forward pass
            batch_idx (Optional[int]): index of the batch in the dataloader
            external_cache (Optional[ActivationCache]): external cache to use in the forward pass

        Returns:
            hooks (list[dict]): list of dictionaries with the component and the intervention to perform in the forward pass of the model
        """
        hooks = []

        if extraction_config.extract_resid_out:
            # assert that the component exists in the model
            hooks += [
                {
                    "component": self.model_config.residual_stream_hook_name.format(i),
                    "intervention": partial(
                        save_resid_hook,
                        cache=cache,
                        cache_key=f"resid_out_{i}",
                        token_index=token_index,
                    ),
                }
                for i in range(0, self.model_config.num_hidden_layers)
            ]
        if extraction_config.extract_resid_in:
            # assert that the component exists in the model
            hooks += [
                {
                    "component": self.model_config.residual_stream_input_hook_name.format(
                        i
                    ),
                    "intervention": partial(
                        save_resid_hook,
                        cache=cache,
                        cache_key=f"resid_in_{i}",
                        token_index=token_index,
                    ),
                }
                for i in range(0, self.model_config.num_hidden_layers)
            ]

        if extraction_config.extract_resid_in_post_layernorm:
            hooks += [
                {
                    "component": self.model_config.residual_stream_input_post_layernorm_hook_name.format(
                        i
                    ),
                    "intervention": partial(
                        save_resid_hook,
                        cache=cache,
                        cache_key=f"resid_in_post_layernorm_{i}",
                        token_index=token_index,
                    ),
                }
                for i in range(0, self.model_config.num_hidden_layers)
            ]

        if extraction_config.save_input_ids:
            hooks += [
                {
                    "component": self.model_config.embed_tokens,
                    "intervention": partial(
                        embed_hook,
                        cache=cache,
                        cache_key="input_ids",
                    ),
                }
            ]

        if extraction_config.extract_values:
            hooks += [
                {
                    "component": self.model_config.attn_value_hook_name.format(i),
                    "intervention": partial(
                        save_resid_hook,
                        cache=cache,
                        cache_key=f"values_{i}",
                        token_index=token_index,
                    ),
                }
                for i in range(0, self.model_config.num_hidden_layers)
            ]

        if extraction_config.extract_attn_in:
            hooks += [
                {
                    "component": self.model_config.attn_in_hook_name.format(i),
                    "intervention": partial(
                        save_resid_hook,
                        cache=cache,
                        cache_key=f"attn_in_{i}",
                        token_index=token_index,
                    ),
                }
                for i in range(0, self.model_config.num_hidden_layers)
            ]

        if extraction_config.extract_attn_out:
            hooks += [
                {
                    "component": self.model_config.attn_out_hook_name.format(i),
                    "intervention": partial(
                        save_resid_hook,
                        cache=cache,
                        cache_key=f"attn_out_{i}",
                        token_index=token_index,
                    ),
                }
                for i in range(0, self.model_config.num_hidden_layers)
            ]

        if extraction_config.extract_avg:
            # Define a hook that saves the activations of the residual stream
            raise NotImplementedError(
                "The hook for the average is not working with token_index as a list"
            )

            # hooks.extend(
            #     [
            #         {
            #             "component": self.model_config.residual_stream_hook_name.format(
            #                 i
            #             ),
            #             "intervention": partial(
            #                 avg_hook,
            #                 cache=cache,
            #                 cache_key="resid_avg_{}".format(i),
            #                 last_image_idx=last_image_idxs, #type
            #                 end_image_idx=end_image_idxs,
            #             ),
            #         }
            #         for i in range(0, self.model_config.num_hidden_layers)
            #     ]
            # )
        if extraction_config.extract_resid_mid:
            hooks += [
                {
                    "component": self.model_config.intermediate_stream_hook_name.format(
                        i
                    ),
                    "intervention": partial(
                        save_resid_hook,
                        cache=cache,
                        cache_key=f"resid_mid_{i}",
                        token_index=token_index,
                    ),
                }
                for i in range(0, self.model_config.num_hidden_layers)
            ]

            # if we want to extract the output of the heads

        # PATCHING
        if patching_queries:
            token_to_pos = partial(
                map_token_to_pos,
                _get_token_index=token_dict,
                # string_tokens=string_tokens,
                hf_tokenizer=self.hf_tokenizer,
                inputs=inputs,
            )
            patching_queries = preprocess_patching_queries(
                patching_queries=patching_queries,
                map_token_to_pos=token_to_pos,
                model_config=self.model_config,
            )

            def make_patch_tokens_hook(patching_queries_subset):
                """
                Creates a hook function to patch the activations in the
                current forward pass.
                """

                def patch_tokens_hook(module, input, output):
                    if output is None:
                        if isinstance(input, tuple):
                            b = input[0]
                        else:
                            b = input
                    else:
                        if isinstance(output, tuple):
                            b = output[0]
                        else:
                            b = output
                    # Modify the tensor without affecting the computation graph
                    act_to_patch = b.detach().clone()
                    for pos, patch in zip(
                        patching_queries_subset["pos_token_to_patch"],
                        patching_queries_subset["patching_activations"],
                    ):
                        act_to_patch[0, pos, :] = patching_queries_subset[
                            "patching_activations"
                        ].values[0]

                    if output is None:
                        if isinstance(input, tuple):
                            return (act_to_patch, *input[1:])
                        elif input is not None:
                            return act_to_patch
                    else:
                        if isinstance(output, tuple):
                            return (act_to_patch, *output[1:])
                        elif output is not None:
                            return act_to_patch
                    raise ValueError("No output or input found")

                return patch_tokens_hook

            # Group the patching queries by 'layer' and 'act_type'
            grouped_queries = patching_queries.groupby(["layer", "activation_type"])

            for (layer, act_type), group in grouped_queries:
                hook_name_template = self.act_type_to_hook_name.get(
                    act_type[:-3]
                )  # -3 because we remove {}
                if not hook_name_template:
                    raise ValueError(f"Unknown activation type: {act_type}")
                    # continue  # Skip unknown activation types

                hook_name = hook_name_template.format(layer)
                hook_function = partial(make_patch_tokens_hook(group))

                hooks.append(
                    {
                        "component": hook_name,
                        "intervention": hook_function,
                    }
                )

        if ablation_queries is not None:
            # TODO: debug and test the ablation. Check with ale
            token_to_pos = partial(
                map_token_to_pos,
                _get_token_index=token_dict,
                # string_tokens=string_tokens,
                hf_tokenizer=self.hf_tokenizer,
                inputs=inputs,
            )
            if self.config.batch_size > 1:
                raise ValueError("Ablation is not supported with batch size > 1")
            ablation_manager = AblationManager(
                model_config=self.model_config,
                token_to_pos=token_to_pos,
                inputs=inputs,
                model_attn_type=self.config.attn_implementation,
                ablation_queries=pd.DataFrame(ablation_queries)
                if isinstance(ablation_queries, dict)
                else ablation_queries,
            )
            hooks.extend(ablation_manager.main())

        if (
            extraction_config.extract_values_vectors_projected
            or extraction_config.extract_avg_values_vectors_projected
        ):
            if (
                extraction_config.attn_heads == "all"
            ):  # extract the output of all the heads
                hooks += [
                    {
                        "component": self.model_config.attn_value_hook_name.format(i),
                        "intervention": partial(
                            projected_value_vectors_head,
                            cache=cache,
                            layer=i,
                            num_attention_heads=self.model_config.num_attention_heads,
                            num_key_value_heads=self.model_config.num_key_value_heads,
                            hidden_size=self.model_config.hidden_size,
                            d_head=self.model_config.head_dim,
                            out_proj_weight=get_attribute_from_name(
                                self.hf_model,
                                f"{self.model_config.attn_out_proj_weight.format(i)}",
                            ),
                            out_proj_bias=get_attribute_from_name(
                                self.hf_model,
                                f"{self.model_config.attn_out_proj_bias.format(i)}",
                            ),
                            head="all",
                        ),
                    }
                    for i in range(0, self.model_config.num_hidden_layers)
                ]
            elif isinstance(extraction_config.attn_heads, list):
                for el in extraction_config.attn_heads:
                    head = el["head"]
                    layer = el["layer"]
                    hooks.append(
                        {
                            "component": self.model_config.attn_value_hook_name.format(
                                layer
                            ),
                            "intervention": partial(
                                projected_value_vectors_head,
                                cache=cache,
                                layer=layer,
                                num_attention_heads=self.model_config.num_attention_heads,
                                hidden_size=self.model_config.hidden_size,
                                out_proj_weight=self.hf_model.model.layers[
                                    layer
                                ].self_attn.o_proj.weight,  # (d_model, d_model)
                                out_proj_bias=self.hf_model.model.layers[
                                    layer
                                ].self_attn.o_proj.bias,  # (d_model)
                                head=head,
                            ),
                        }
                    )
        if extraction_config.extract_avg_attn_pattern:
            if external_cache is None:
                self.logger.warning(
                    """The external_cache is None. The average could not be computed since missing an external cache where store the iterations.
                    Returning the base attn_pattern for this input...
                    """
                )
                extract_attn_pattern = True
            elif batch_idx is None:
                self.logger.warning(
                    """The batch_idx is None. The average could not be computed since missing the batch index.
                    Returning the base attn_pattern for this input...
                    """
                )
                extract_attn_pattern = True
            else:
                # move the cache to the same device of the model
                external_cache.to(self.first_device)
                hooks += [
                    {
                        "component": self.model_config.attn_matrix_hook_name.format(i),
                        "intervention": partial(
                            avg_attention_pattern_head,
                            layer=i,
                            attn_pattern_current_avg=external_cache,
                            batch_idx=batch_idx,
                            cache=cache,
                            extract_avg_value=extraction_config.extract_avg_values_vectors_projected,
                        ),
                    }
                    for i in range(0, self.model_config.num_hidden_layers)
                ]
        if extraction_config.extract_attn_pattern:
            if extraction_config.attn_heads == "all":
                hooks += [
                    {
                        "component": self.model_config.attn_matrix_hook_name.format(i),
                        "intervention": partial(
                            attention_pattern_head,
                            cache=cache,
                            layer=i,
                            head="all",
                        ),
                    }
                    for i in range(0, self.model_config.num_hidden_layers)
                ]
            else:
                hooks += [
                    {
                        "component": self.model_config.attn_matrix_hook_name.format(
                            el["layer"]
                        ),
                        "intervention": partial(
                            attention_pattern_head,
                            cache=cache,
                            layer=el["layer"],
                            head=el["head"],
                        ),
                    }
                    for el in extraction_config.attn_heads
                ]

            # if additional hooks are not empty, add them to the hooks list
        if self.additional_hooks:
            hooks += self.additional_hooks
        return hooks

    @torch.no_grad()
    def forward(
        self,
        inputs,
        target_token_positions: List[str] = ["last"],
        split_positions: Optional[List[int]] = None,
        extraction_config: ExtractionConfig = ExtractionConfig(),
        ablation_queries: Optional[pd.DataFrame | None] = None,
        patching_queries: Optional[pd.DataFrame | None] = None,
        external_cache: Optional[ActivationCache] = None,
        attn_heads: Union[list[dict], Literal["all"]] = "all",
        batch_idx: Optional[int] = None,
        move_to_cpu: bool = False,
    ) -> ActivationCache:
        r"""
        Forward pass of the model. It will extract the activations of the model and save them in the cache. It will also perform ablation and patching if needed.

        Args:
            inputs (dict): dictionary with the inputs of the model (input_ids, attention_mask, pixel_values ...)
            target_token_positions (list[str]): list of tokens to extract the activations from (["last", "end-image", "start-image", "first"])
            split_positions (Optional[list[int]]): list of split positions of the tokens
            extraction_config (ExtractionConfig): configuration of the extraction of the activations of the model
            ablation_queries (Optional[pd.DataFrame | None]): dataframe with the ablation queries to perform during forward pass
            patching_queries (Optional[pd.DataFrame | None]): dataframe with the patching queries to perform during forward pass
            external_cache (Optional[ActivationCache]): external cache to use in the forward pass
            attn_heads (Union[list[dict], Literal["all"]]): list of dictionaries with the layer and head to extract the attention pattern or 'all' to
            batch_idx (Optional[int]): index of the batch in the dataloader
            move_to_cpu (bool): if True, move the activations to the cpu

        Returns:
            cache (ActivationCache): dictionary with the activations of the model

        Examples:
            >>> inputs = {"input_ids": torch.tensor([[101, 1234, 1235, 102]]), "attention_mask": torch.tensor([[1, 1, 1, 1]])}
            >>> model.forward(inputs, target_token_positions=["last"], extract_resid_out=True)
            {'resid_out_0': tensor([[[0.1, 0.2, 0.3, 0.4]]], grad_fn=<CopyBackwards>), 'input_ids': tensor([[101, 1234, 1235, 102]]), 'mapping_index': {'last': [0]}}
        """

        if target_token_positions is None and extraction_config.is_not_empty():
            raise ValueError(
                "target_token_positions must be passed if we want to extract the activations of the model"
            )
        cache = ActivationCache()
        string_tokens = self.to_string_tokens(
            self.input_handler.get_input_ids(inputs).squeeze()
        )
        token_index, token_dict = TokenIndex(
            self.config.model_name, split_positions=split_positions
        ).get_token_index(
            tokens=target_token_positions,
            string_tokens=string_tokens,
            return_type="all",
        )
        assert isinstance(token_index, list), "Token index must be a list"
        assert isinstance(token_dict, dict), "Token dict must be a dict"

        hooks = self.create_hooks(  # TODO: add **kwargs
            inputs=inputs,
            token_dict=token_dict,
            token_index=token_index,
            cache=cache,
            extraction_config=extraction_config,
            ablation_queries=ablation_queries,
            patching_queries=patching_queries,
            batch_idx=batch_idx,
            external_cache=external_cache,
        )

        hook_handlers = self.set_hooks(hooks)
        inputs = self.input_handler.prepare_inputs(
            inputs, self.first_device, self.config.torch_dtype
        )
        # forward pass
        output = self.hf_model(
            **inputs,
            # output_original_output=True,
            # output_attentions=extract_attn_pattern,
        )

        cache["logits"] = output.logits[:, -1]
        # since attention_patterns are returned in the output, we need to adapt to the cache structure
        if move_to_cpu:
            cache.cpu()
            if external_cache is not None:
                external_cache.cpu()

        mapping_index = {}
        current_index = 0
        for token in target_token_positions:
            mapping_index[token] = []
            if isinstance(token_dict, int):
                mapping_index[token].append(current_index)
                current_index += 1
            elif isinstance(token_dict, dict):
                for idx in range(len(token_dict[token])):
                    mapping_index[token].append(current_index)
                    current_index += 1
            elif isinstance(token_dict, list):
                for idx in range(len(token_dict)):
                    mapping_index[token].append(current_index)
                    current_index += 1
            else:
                raise ValueError("Token dict must be an int, a dict or a list")
        cache["mapping_index"] = mapping_index

        self.remove_hooks(hook_handlers)

        return cache

    def __call__(self, *args, **kwds) -> ActivationCache:
        r"""
        Call the forward method of the model
        """
        return self.forward(*args, **kwds)

    def predict(self, k=10, **kwargs):
        out = self.forward(**kwargs)
        logits = out["logits"]
        probs = torch.softmax(logits, dim=-1)
        probs = probs.squeeze()
        topk = torch.topk(probs, k)
        # return a dictionary with the topk tokens and their probabilities
        string_tokens = self.to_string_tokens(topk.indices)
        token_probs = {}
        for token, prob in zip(string_tokens, topk.values):
            if token not in token_probs:
                token_probs[token] = prob.item()
        return token_probs
        # return {
        #     token: prob.item() for token, prob in zip(string_tokens, topk.values)
        # }

    def get_module_from_string(self, component: str):
        r"""
        Return a module from the model given the string of the module.

        Args:
            component (str): the string of the module

        Returns:
            module (torch.nn.Module): the module of the model

        Examples:
            >>> model.get_module_from_string("model.layers[0].self_attn")
            BertAttention(...)
        """
        return self.hf_model.retrieve_modules_from_names(component)

    def set_hooks(self, hooks: List[Dict[str, Any]]):
        r"""
        Set the hooks in the model

        Args:
            hooks (list[dict]): list of dictionaries with the component and the intervention to perform in the forward pass of the model

        Returns:
            hook_handlers (list): list of hook handlers
        """

        if len(hooks) == 0:
            return []

        hook_handlers = []
        for hook in hooks:
            component = hook["component"]
            hook_function = hook["intervention"]

            # get the last module string (.input or .output) and remove it from the component string
            last_module = component.split(".")[-1]
            # now remove the last module from the component string
            component = component[: -len(last_module) - 1]
            # check if the component exists in the model
            try:
                self.assert_module_exists(component)
            except ValueError as e:
                self.logger.warning(
                    f"Error: {e}. Probably the module {component} do not exists in the model. If the module is the attention_matrix_hook, try callig HookedModel.set_custom_hooks() or setting attn_implementation == 'custom_eager'.  Now we will skip the hook for the component {component}",
                    std_out=True,
                )
                continue
            if last_module == "input":
                hook_handlers.append(
                    get_module_by_path(
                        self.hf_model, component
                    ).register_forward_pre_hook(
                        partial(hook_function, output=None), with_kwargs=True
                    )
                )
            elif last_module == "output":
                hook_handlers.append(
                    get_module_by_path(self.hf_model, component).register_forward_hook(
                        hook_function, with_kwargs=True
                    )
                )

        return hook_handlers

    def remove_hooks(self, hook_handlers):
        """
        Remove all the hooks from the model
        """
        for hook_handler in hook_handlers:
            hook_handler.remove()

    @torch.no_grad()
    def generate(
        self,
        inputs,
        generation_config: Optional[GenerationConfig] = None,
        target_token_positions: Optional[List[str]] = None,
        return_text: bool = False,
        **kwargs,
    ) -> ActivationCache:
        r"""
        __WARNING__: This method could be buggy in the return dict of the output. Pay attention!

        Generate new tokens using the model and the inputs passed as argument
        Args:
            inputs (dict): dictionary with the inputs of the model {"input_ids": ..., "attention_mask": ..., "pixel_values": ...}
            generation_config (Optional[GenerationConfig]): original hf dataclass with the generation configuration
            **kwargs: additional arguments to control hooks generation (i.e. ablation_queries, patching_queries)
        Returns:
            output (ActivationCache): dictionary with the output of the model

        Examples:
            >>> inputs = {"input_ids": torch.tensor([[101, 1234, 1235, 102]]), "attention_mask": torch.tensor([[1, 1, 1, 1]])}
            >>> model.generate(inputs)
            {'sequences': tensor([[101, 1234, 1235, 102]])}
        """
        # Initialize cache for logits
        # TODO FIX THIS. IT is not general and it is not working
        # raise NotImplementedError("This method is not working. It needs to be fixed")
        hook_handlers = None
        if target_token_positions is not None:
            string_tokens = self.to_string_tokens(
                self.input_handler.get_input_ids(inputs).squeeze()
            )
            token_index, token_dict = TokenIndex(
                self.config.model_name, split_positions=None
            ).get_token_index(tokens=[], string_tokens=string_tokens, return_type="all")
            assert isinstance(token_index, list), "Token index must be a list"
            assert isinstance(token_dict, dict), "Token dict must be a dict"
            hooks = self.create_hooks(
                inputs=inputs,
                token_dict=token_dict,
                token_index=token_index,
                cache=ActivationCache(),
                **kwargs,
            )
            hook_handlers = self.set_hooks(hooks)

        inputs = self.input_handler.prepare_inputs(inputs, self.first_device)

        model_to_use = (
            self.hf_language_model if self.use_language_model else self.hf_model
        )
        assert model_to_use is not None, "Error: The model is not loaded"

        output = model_to_use.generate(
            **inputs,  # type: ignore
            generation_config=generation_config,
            output_scores=False,  # type: ignore
        )
        if hook_handlers:
            self.remove_hooks(hook_handlers)
        if return_text:
            return self.hf_tokenizer.decode(output[0], skip_special_tokens=True)  # type: ignore
        return output  # type: ignore

    @torch.no_grad()
    def extract_cache(
        self,
        dataloader,
        target_token_positions: List[str],
        batch_saver: Callable = lambda x: None,
        move_to_cpu_after_forward: bool = True,
        # save_other_batch_elements: bool = False,
        **kwargs,
    ):
        r"""
        Method to extract the activations of the model from a specific dataset. Compute a forward pass for each batch of the dataloader and save the activations in the cache.

        Args:
            dataloader (iterable): dataloader with the dataset. Each element of the dataloader must be a dictionary that contains the inputs that the model expects (input_ids, attention_mask, pixel_values ...)
            extracted_token_position (list[str]): list of tokens to extract the activations from (["last", "end-image", "start-image", "first"])
            batch_saver (Callable): function to save in the cache the additional element from each elemtn of the batch (For example, the labels of the dataset)
            move_to_cpu_after_forward (bool): if True, move the activations to the cpu right after the any forward pass of the model
            **kwargs: additional arguments to control hooks generation, basically accept any argument handled by the `.forward` method (i.e. ablation_queries, patching_queries, extract_resid_in)

        Returns:
            final_cache: dictionary with the activations of the model. The keys are the names of the activations and the values are the activations themselve

        Examples:
            >>> dataloader = [{"input_ids": torch.tensor([[101, 1234, 1235, 102]]), "attention_mask": torch.tensor([[1, 1, 1, 1]]), "labels": torch.tensor([1])}, ...]
            >>> model.extract_cache(dataloader, extracted_token_position=["last"], batch_saver=lambda x: {"labels": x["labels"]})
            {'resid_out_0': tensor([[[0.1, 0.2, 0.3, 0.4]]], grad_fn=<CopyBackwards>), 'labels': tensor([1]), 'mapping_index': {'last': [0]}}
        """

        self.logger.info("Extracting cache", std_out=True)

        # get the function to save in the cache the additional element from the batch sime

        self.logger.info("Forward pass started", std_out=True)
        all_cache = ActivationCache()  # a list of dictoionaries, each dictionary contains the activations of the model for a batch (so a dict of tensors)
        attn_pattern = (
            ActivationCache()
        )  # Initialize the dictionary to hold running averages

        example_dict = {}
        n_batches = 0  # Initialize batch counter

        for batch in tqdm(dataloader, total=len(dataloader), desc="Extracting cache:"):
            # log_memory_usage("Extract cache - Before batch")
            # tokens, others = batch
            # inputs = {k: v.to(self.first_device) for k, v in tokens.items()}

            # get input_ids, attention_mask, and if available, pixel_values from batch (that is a dictionary)
            # then move them to the first device
            inputs = self.input_handler.prepare_inputs(batch, self.first_device)
            others = {k: v for k, v in batch.items() if k not in inputs}

            cache = self.forward(
                inputs,
                target_token_positions=target_token_positions,
                split_positions=batch.get("split_positions", None),
                external_cache=attn_pattern,
                batch_idx=n_batches,
                **kwargs,
            )
            # possible memory leak from here -___--------------->
            additional_dict = batch_saver(others)
            if additional_dict is not None:
                # cache = {**cache, **additional_dict}
                cache.update(additional_dict)

            if move_to_cpu_after_forward:
                cache.cpu()

            n_batches += 1  # Increment batch counter# Process and remove "pattern_" keys from cache
            all_cache.cat(cache)

            del cache
            inputs = self.input_handler.prepare_inputs(batch, "cpu")
            del inputs
            torch.cuda.empty_cache()

        self.logger.info(
            "Forward pass finished - started to aggregate different batch", std_out=True
        )
        all_cache.update(attn_pattern)
        all_cache["example_dict"] = example_dict
        self.logger.info("Aggregation finished", std_out=True)

        torch.cuda.empty_cache()
        return all_cache

    @torch.no_grad()
    def compute_patching(
        self,
        target_token_positions: List[str],
        # counterfactual_dataset,
        base_dataloader,
        target_dataloader,
        patching_query=[
            {
                "patching_elem": "@end-image",
                "layers_to_patch": [1, 2, 3, 4],
                "activation_type": "resid_in_{}",
            }
        ],
        base_dictonary_idxs: Optional[List[List[int]]] = None,
        target_dictonary_idxs: Optional[List[List[int]]] = None,
        return_logit_diff: bool = False,
        batch_saver: Callable = lambda x: None,
        **kwargs,
    ) -> ActivationCache:
        r"""
        Method for activation patching. This substitutes the activations of the model
        with the activations of the counterfactual dataset.

        It performs three forward passes:
        1. Forward pass on the base dataset to extract the activations of the model (cat).
        2. Forward pass on the target dataset to extract clean logits (dog)
        [to compare against the patched logits].
        3. Forward pass on the target dataset to patch (cat) into (dog)
        and extract the patched logits.

        Args:
            target_token_positions (list[str]): List of tokens to extract the activations from.
            base_dataloader (torch.utils.data.DataLoader): Dataloader with the base dataset. (dataset where we sample the activations from)
            target_dataloader (torch.utils.data.DataLoader): Dataloader with the target dataset. (dataset where we patch the activations)
            patching_query (list[dict]): List of dictionaries with the patching queries. Each dictionary must have the keys "patching_elem", "layers_to_patch" and "activation_type". The "patching_elem" is the token to patch, the "layers_to_patch" is the list of layers to patch and the "activation_type" is the type of the activation to patch. The activation type must be one of the following: "resid_in_{}", "resid_out_{}", "resid_mid_{}", "attn_in_{}", "attn_out_{}", "values_{}". The "{}" will be replaced with the layer index.
            base_dictonary_idxs (list[list[int]]): List of list of integers with the indexes of the tokens in the dictonary that we are interested in. It's useful to extract the logit difference between the clean logits and the patched logits.
            target_dictonary_idxs (list[list[int]]): List of list of integers with the indexes of the tokens in the dictonary that we are interested in. It's useful to extract the logit difference between the clean logits and the patched logits.
            return_logit_diff (bool): If True, it will return the logit difference between the clean logits and the patched logits.


        Returns:
            final_cache (ActivationCache): dictionary with the activations of the model. The keys are the names of the activations and the values are the activations themselve

        Examples:
            >>> model.compute_patching(
            >>>     target_token_positions=["end-image", " last"],
            >>>     base_dataloader=base_dataloader,
            >>>     target_dataloader=target_dataloader,
            >>>     base_dictonary_idxs=base_dictonary_idxs,
            >>>     target_dictonary_idxs=target_dictonary_idxs,
            >>>     patching_query=[
            >>>         {
            >>>             "patching_elem": "@end-image",
            >>>             "layers_to_patch": [1, 2, 3, 4],
            >>>             "activation_type": "resid_in_{}",
            >>>         }
            >>>     ],
            >>>     return_logit_diff=False,
            >>>     batch_saver=lambda x: None,
            >>> )
            >>> print(final_cache)
            {
                "resid_out_0": tensor of shape [batch, seq_len, hidden_size] with the activations of the residual stream of layer 0
                "resid_mid_0": tensor of shape [batch, seq_len, hidden_size] with the activations of the residual stream of layer 0
                ....
                "logit_diff_variation": tensor of shape [batch] with the logit difference variation
                "logit_diff_in_clean": tensor of shape [batch] with the logit difference in the clean logits
                "logit_diff_in_patched": tensor of shape [batch] with the logit difference in the patched logits
            }
        """
        self.logger.info("Computing patching", std_out=True)

        self.logger.info("Forward pass started", std_out=True)
        self.logger.info(
            f"Patching elements: {[q['patching_elem'] for q in patching_query]} at {[query['activation_type'][:-3] for query in patching_query]}",
            std_out=True,
        )

        # get a random number in the range of the dataset to save a random batch
        all_cache = ActivationCache()
        # for each batch in the dataset
        for index, (base_batch, target_batch) in tqdm(
            enumerate(zip(base_dataloader, target_dataloader)),
            desc="Computing patching on the dataset:",
            total=len(base_dataloader),
        ):
            torch.cuda.empty_cache()
            inputs = self.input_handler.prepare_inputs(base_batch, self.first_device)

            # set the right arguments for extract the patching activations
            activ_type = [query["activation_type"][:-3] for query in patching_query]

            args = {
                "extract_resid_out": True,
                "extract_resid_in": False,
                "extract_resid_mid": False,
                "extract_attn_in": False,
                "extract_attn_out": False,
                "extract_values": False,
                "extract_head_out": False,
                "extract_avg_attn_pattern": False,
                "extract_avg_values_vectors_projected": False,
                "extract_values_vectors_projected": False,
                "extract_avg": False,
                "ablation_queries": None,
                "patching_queries": None,
                "external_cache": None,
                "attn_heads": "all",
                "batch_idx": None,
                "move_to_cpu": False,
            }

            if "resid_in" in activ_type:
                args["extract_resid_in"] = True
            if "resid_out" in activ_type:
                args["extract_resid_out"] = True
            if "resid_mid" in activ_type:
                args["extract_intermediate_states"] = True
            if "attn_in" in activ_type:
                args["extract_attn_in"] = True
            if "attn_out" in activ_type:
                args["extract_attn_out"] = True
            if "values" in activ_type:
                args["extract_values"] = True
            # other cases

            # first forward pass to extract the base activations
            base_cache = self.forward(
                inputs=inputs,
                target_token_positions=target_token_positions,
                split_positions=base_batch.get("split_positions", None),
                extraction_config=ExtractionConfig(**args),
                ablation_queries=args["ablation_queries"],
                patching_queries=args["patching_queries"],
                external_cache=args["external_cache"],
                batch_idx=args["batch_idx"],
                move_to_cpu=args["move_to_cpu"],
            )

            # extract the target activations
            target_inputs = self.input_handler.prepare_inputs(
                target_batch, self.first_device
            )

            requested_position_to_extract = []
            for query in patching_query:
                query["patching_activations"] = base_cache
                if (
                    query["patching_elem"].split("@")[1]
                    not in requested_position_to_extract
                ):
                    requested_position_to_extract.append(
                        query["patching_elem"].split("@")[1]
                    )
                query["base_activation_index"] = base_cache["mapping_index"][
                    query["patching_elem"].split("@")[1]
                ]

            # second forward pass to extract the clean logits
            target_clean_cache = self.forward(
                target_inputs,
                target_token_positions=requested_position_to_extract,
                split_positions=target_batch.get("split_positions", None),
                # move_to_cpu=True,
            )

            # merge requested_position_to_extract with extracted_token_positio
            # third forward pass to patch the activations
            target_patched_cache = self.forward(
                target_inputs,
                target_token_positions=list(
                    set(target_token_positions + requested_position_to_extract)
                ),
                split_positions=target_batch.get("split_positions", None),
                patching_queries=patching_query,
                **kwargs,
            )

            if return_logit_diff:
                if base_dictonary_idxs is None or target_dictonary_idxs is None:
                    raise ValueError(
                        "To compute the logit difference, you need to pass the base_dictonary_idxs and the target_dictonary_idxs"
                    )
                self.logger.info("Computing logit difference", std_out=True)
                # get the target tokens (" cat" and " dog")
                base_targets = base_dictonary_idxs[index]
                target_targets = target_dictonary_idxs[index]

                # compute the logit difference
                result_diff = logit_diff(
                    base_label_tokens=[s for s in base_targets],
                    target_label_tokens=[c for c in target_targets],
                    target_clean_logits=target_clean_cache["logits"],
                    target_patched_logits=target_patched_cache["logits"],
                )
                target_patched_cache["logit_diff_variation"] = result_diff[
                    "diff_variation"
                ]
                target_patched_cache["logit_diff_in_clean"] = result_diff[
                    "diff_in_clean"
                ]
                target_patched_cache["logit_diff_in_patched"] = result_diff[
                    "diff_in_patched"
                ]

            # compute the KL divergence
            result_kl = kl_divergence_diff(
                base_logits=base_cache["logits"],
                target_clean_logits=target_clean_cache["logits"],
                target_patched_logits=target_patched_cache["logits"],
            )
            for key, value in result_kl.items():
                target_patched_cache[key] = value

            target_patched_cache["base_logits"] = base_cache["logits"]
            target_patched_cache["target_clean_logits"] = target_clean_cache["logits"]
            # rename logits to target_patched_logits
            target_patched_cache["target_patched_logits"] = target_patched_cache[
                "logits"
            ]
            del target_patched_cache["logits"]

            target_patched_cache.cpu()

            # all_cache.append(target_patched_cache)
            all_cache.cat(target_patched_cache)

        self.logger.info(
            "Forward pass finished - started to aggregate different batch", std_out=True
        )
        # final_cache = aggregate_cache_efficient(all_cache)

        self.logger.info("Aggregation finished", std_out=True)
        return all_cache

__call__(*args, **kwds)

Call the forward method of the model

Source code in easyroutine/interpretability/hooked_model.py
908
909
910
911
912
def __call__(self, *args, **kwds) -> ActivationCache:
    r"""
    Call the forward method of the model
    """
    return self.forward(*args, **kwds)

compute_patching(target_token_positions, base_dataloader, target_dataloader, patching_query=[{'patching_elem': '@end-image', 'layers_to_patch': [1, 2, 3, 4], 'activation_type': 'resid_in_{}'}], base_dictonary_idxs=None, target_dictonary_idxs=None, return_logit_diff=False, batch_saver=lambda x: None, **kwargs)

Method for activation patching. This substitutes the activations of the model with the activations of the counterfactual dataset.

It performs three forward passes: 1. Forward pass on the base dataset to extract the activations of the model (cat). 2. Forward pass on the target dataset to extract clean logits (dog) [to compare against the patched logits]. 3. Forward pass on the target dataset to patch (cat) into (dog) and extract the patched logits.

Parameters:

Name Type Description Default
target_token_positions list[str]

List of tokens to extract the activations from.

required
base_dataloader DataLoader

Dataloader with the base dataset. (dataset where we sample the activations from)

required
target_dataloader DataLoader

Dataloader with the target dataset. (dataset where we patch the activations)

required
patching_query list[dict]

List of dictionaries with the patching queries. Each dictionary must have the keys "patching_elem", "layers_to_patch" and "activation_type". The "patching_elem" is the token to patch, the "layers_to_patch" is the list of layers to patch and the "activation_type" is the type of the activation to patch. The activation type must be one of the following: "resid_in_{}", "resid_out_{}", "resid_mid_{}", "attn_in_{}", "attn_out_{}", "values_{}". The "{}" will be replaced with the layer index.

[{'patching_elem': '@end-image', 'layers_to_patch': [1, 2, 3, 4], 'activation_type': 'resid_in_{}'}]
base_dictonary_idxs list[list[int]]

List of list of integers with the indexes of the tokens in the dictonary that we are interested in. It's useful to extract the logit difference between the clean logits and the patched logits.

None
target_dictonary_idxs list[list[int]]

List of list of integers with the indexes of the tokens in the dictonary that we are interested in. It's useful to extract the logit difference between the clean logits and the patched logits.

None
return_logit_diff bool

If True, it will return the logit difference between the clean logits and the patched logits.

False

Returns:

Name Type Description
final_cache ActivationCache

dictionary with the activations of the model. The keys are the names of the activations and the values are the activations themselve

Examples:

>>> model.compute_patching(
>>>     target_token_positions=["end-image", " last"],
>>>     base_dataloader=base_dataloader,
>>>     target_dataloader=target_dataloader,
>>>     base_dictonary_idxs=base_dictonary_idxs,
>>>     target_dictonary_idxs=target_dictonary_idxs,
>>>     patching_query=[
>>>         {
>>>             "patching_elem": "@end-image",
>>>             "layers_to_patch": [1, 2, 3, 4],
>>>             "activation_type": "resid_in_{}",
>>>         }
>>>     ],
>>>     return_logit_diff=False,
>>>     batch_saver=lambda x: None,
>>> )
>>> print(final_cache)
{
    "resid_out_0": tensor of shape [batch, seq_len, hidden_size] with the activations of the residual stream of layer 0
    "resid_mid_0": tensor of shape [batch, seq_len, hidden_size] with the activations of the residual stream of layer 0
    ....
    "logit_diff_variation": tensor of shape [batch] with the logit difference variation
    "logit_diff_in_clean": tensor of shape [batch] with the logit difference in the clean logits
    "logit_diff_in_patched": tensor of shape [batch] with the logit difference in the patched logits
}
Source code in easyroutine/interpretability/hooked_model.py
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
@torch.no_grad()
def compute_patching(
    self,
    target_token_positions: List[str],
    # counterfactual_dataset,
    base_dataloader,
    target_dataloader,
    patching_query=[
        {
            "patching_elem": "@end-image",
            "layers_to_patch": [1, 2, 3, 4],
            "activation_type": "resid_in_{}",
        }
    ],
    base_dictonary_idxs: Optional[List[List[int]]] = None,
    target_dictonary_idxs: Optional[List[List[int]]] = None,
    return_logit_diff: bool = False,
    batch_saver: Callable = lambda x: None,
    **kwargs,
) -> ActivationCache:
    r"""
    Method for activation patching. This substitutes the activations of the model
    with the activations of the counterfactual dataset.

    It performs three forward passes:
    1. Forward pass on the base dataset to extract the activations of the model (cat).
    2. Forward pass on the target dataset to extract clean logits (dog)
    [to compare against the patched logits].
    3. Forward pass on the target dataset to patch (cat) into (dog)
    and extract the patched logits.

    Args:
        target_token_positions (list[str]): List of tokens to extract the activations from.
        base_dataloader (torch.utils.data.DataLoader): Dataloader with the base dataset. (dataset where we sample the activations from)
        target_dataloader (torch.utils.data.DataLoader): Dataloader with the target dataset. (dataset where we patch the activations)
        patching_query (list[dict]): List of dictionaries with the patching queries. Each dictionary must have the keys "patching_elem", "layers_to_patch" and "activation_type". The "patching_elem" is the token to patch, the "layers_to_patch" is the list of layers to patch and the "activation_type" is the type of the activation to patch. The activation type must be one of the following: "resid_in_{}", "resid_out_{}", "resid_mid_{}", "attn_in_{}", "attn_out_{}", "values_{}". The "{}" will be replaced with the layer index.
        base_dictonary_idxs (list[list[int]]): List of list of integers with the indexes of the tokens in the dictonary that we are interested in. It's useful to extract the logit difference between the clean logits and the patched logits.
        target_dictonary_idxs (list[list[int]]): List of list of integers with the indexes of the tokens in the dictonary that we are interested in. It's useful to extract the logit difference between the clean logits and the patched logits.
        return_logit_diff (bool): If True, it will return the logit difference between the clean logits and the patched logits.


    Returns:
        final_cache (ActivationCache): dictionary with the activations of the model. The keys are the names of the activations and the values are the activations themselve

    Examples:
        >>> model.compute_patching(
        >>>     target_token_positions=["end-image", " last"],
        >>>     base_dataloader=base_dataloader,
        >>>     target_dataloader=target_dataloader,
        >>>     base_dictonary_idxs=base_dictonary_idxs,
        >>>     target_dictonary_idxs=target_dictonary_idxs,
        >>>     patching_query=[
        >>>         {
        >>>             "patching_elem": "@end-image",
        >>>             "layers_to_patch": [1, 2, 3, 4],
        >>>             "activation_type": "resid_in_{}",
        >>>         }
        >>>     ],
        >>>     return_logit_diff=False,
        >>>     batch_saver=lambda x: None,
        >>> )
        >>> print(final_cache)
        {
            "resid_out_0": tensor of shape [batch, seq_len, hidden_size] with the activations of the residual stream of layer 0
            "resid_mid_0": tensor of shape [batch, seq_len, hidden_size] with the activations of the residual stream of layer 0
            ....
            "logit_diff_variation": tensor of shape [batch] with the logit difference variation
            "logit_diff_in_clean": tensor of shape [batch] with the logit difference in the clean logits
            "logit_diff_in_patched": tensor of shape [batch] with the logit difference in the patched logits
        }
    """
    self.logger.info("Computing patching", std_out=True)

    self.logger.info("Forward pass started", std_out=True)
    self.logger.info(
        f"Patching elements: {[q['patching_elem'] for q in patching_query]} at {[query['activation_type'][:-3] for query in patching_query]}",
        std_out=True,
    )

    # get a random number in the range of the dataset to save a random batch
    all_cache = ActivationCache()
    # for each batch in the dataset
    for index, (base_batch, target_batch) in tqdm(
        enumerate(zip(base_dataloader, target_dataloader)),
        desc="Computing patching on the dataset:",
        total=len(base_dataloader),
    ):
        torch.cuda.empty_cache()
        inputs = self.input_handler.prepare_inputs(base_batch, self.first_device)

        # set the right arguments for extract the patching activations
        activ_type = [query["activation_type"][:-3] for query in patching_query]

        args = {
            "extract_resid_out": True,
            "extract_resid_in": False,
            "extract_resid_mid": False,
            "extract_attn_in": False,
            "extract_attn_out": False,
            "extract_values": False,
            "extract_head_out": False,
            "extract_avg_attn_pattern": False,
            "extract_avg_values_vectors_projected": False,
            "extract_values_vectors_projected": False,
            "extract_avg": False,
            "ablation_queries": None,
            "patching_queries": None,
            "external_cache": None,
            "attn_heads": "all",
            "batch_idx": None,
            "move_to_cpu": False,
        }

        if "resid_in" in activ_type:
            args["extract_resid_in"] = True
        if "resid_out" in activ_type:
            args["extract_resid_out"] = True
        if "resid_mid" in activ_type:
            args["extract_intermediate_states"] = True
        if "attn_in" in activ_type:
            args["extract_attn_in"] = True
        if "attn_out" in activ_type:
            args["extract_attn_out"] = True
        if "values" in activ_type:
            args["extract_values"] = True
        # other cases

        # first forward pass to extract the base activations
        base_cache = self.forward(
            inputs=inputs,
            target_token_positions=target_token_positions,
            split_positions=base_batch.get("split_positions", None),
            extraction_config=ExtractionConfig(**args),
            ablation_queries=args["ablation_queries"],
            patching_queries=args["patching_queries"],
            external_cache=args["external_cache"],
            batch_idx=args["batch_idx"],
            move_to_cpu=args["move_to_cpu"],
        )

        # extract the target activations
        target_inputs = self.input_handler.prepare_inputs(
            target_batch, self.first_device
        )

        requested_position_to_extract = []
        for query in patching_query:
            query["patching_activations"] = base_cache
            if (
                query["patching_elem"].split("@")[1]
                not in requested_position_to_extract
            ):
                requested_position_to_extract.append(
                    query["patching_elem"].split("@")[1]
                )
            query["base_activation_index"] = base_cache["mapping_index"][
                query["patching_elem"].split("@")[1]
            ]

        # second forward pass to extract the clean logits
        target_clean_cache = self.forward(
            target_inputs,
            target_token_positions=requested_position_to_extract,
            split_positions=target_batch.get("split_positions", None),
            # move_to_cpu=True,
        )

        # merge requested_position_to_extract with extracted_token_positio
        # third forward pass to patch the activations
        target_patched_cache = self.forward(
            target_inputs,
            target_token_positions=list(
                set(target_token_positions + requested_position_to_extract)
            ),
            split_positions=target_batch.get("split_positions", None),
            patching_queries=patching_query,
            **kwargs,
        )

        if return_logit_diff:
            if base_dictonary_idxs is None or target_dictonary_idxs is None:
                raise ValueError(
                    "To compute the logit difference, you need to pass the base_dictonary_idxs and the target_dictonary_idxs"
                )
            self.logger.info("Computing logit difference", std_out=True)
            # get the target tokens (" cat" and " dog")
            base_targets = base_dictonary_idxs[index]
            target_targets = target_dictonary_idxs[index]

            # compute the logit difference
            result_diff = logit_diff(
                base_label_tokens=[s for s in base_targets],
                target_label_tokens=[c for c in target_targets],
                target_clean_logits=target_clean_cache["logits"],
                target_patched_logits=target_patched_cache["logits"],
            )
            target_patched_cache["logit_diff_variation"] = result_diff[
                "diff_variation"
            ]
            target_patched_cache["logit_diff_in_clean"] = result_diff[
                "diff_in_clean"
            ]
            target_patched_cache["logit_diff_in_patched"] = result_diff[
                "diff_in_patched"
            ]

        # compute the KL divergence
        result_kl = kl_divergence_diff(
            base_logits=base_cache["logits"],
            target_clean_logits=target_clean_cache["logits"],
            target_patched_logits=target_patched_cache["logits"],
        )
        for key, value in result_kl.items():
            target_patched_cache[key] = value

        target_patched_cache["base_logits"] = base_cache["logits"]
        target_patched_cache["target_clean_logits"] = target_clean_cache["logits"]
        # rename logits to target_patched_logits
        target_patched_cache["target_patched_logits"] = target_patched_cache[
            "logits"
        ]
        del target_patched_cache["logits"]

        target_patched_cache.cpu()

        # all_cache.append(target_patched_cache)
        all_cache.cat(target_patched_cache)

    self.logger.info(
        "Forward pass finished - started to aggregate different batch", std_out=True
    )
    # final_cache = aggregate_cache_efficient(all_cache)

    self.logger.info("Aggregation finished", std_out=True)
    return all_cache

create_hooks(inputs, cache, token_index, token_dict, extraction_config=ExtractionConfig(), patching_queries=None, ablation_queries=None, batch_idx=None, external_cache=None)

Create the hooks to extract the activations of the model. The hooks will be added to the model and will be called in the forward pass of the model.

Parameters:

Name Type Description Default
inputs dict

dictionary with the inputs of the model (input_ids, attention_mask, pixel_values ...)

required
cache ActivationCache

dictionary where the activations of the model will be saved

required
extracted_token_position list[str]

list of tokens to extract the activations from (["last", "end-image", "start-image", "first"])

required
string_tokens list[str]

list of string tokens

required
split_positions Optional[list[int]]

list of split positions of the tokens

required
attn_heads Union[list[dict], Literal['all']]

list of dictionaries with the layer and head to extract the attention pattern or 'all' to

required
extract_attn_pattern bool

if True, extract the attention pattern of the attn_heads passed

required
extract_attn_out bool

if True, extract the output of the attention of the attn_heads passed

required
extract_attn_in bool

if True, extract the input of the attention of the attn_heads passed

required
extract_avg_attn_pattern bool

if True, extract the average attention pattern of the model

required
extract_avg_values_vectors_projected bool

if True, extract the average values vectors projected of the model

required
extract_resid_in bool

if True, extract the input of the residual stream

required
extract_resid_out bool

if True, extract the output of the residual stream

required
extract_values bool

if True, extract the values of the attention

required
extract_resid_mid bool

if True, extract the output of the intermediate stream

required
save_input_ids bool

if True, save the input_ids in the cache

required
extract_head_out bool

if True, extract the output of the heads [DEPRECATED]

required
extract_values_vectors_projected bool

if True, extract the values vectors projected of the model

required
extract_avg bool

if True, extract the average of the activations

required
ablation_queries Optional[Union[dict, DataFrame]]

dictionary or dataframe with the ablation queries to perform during forward pass

None
patching_queries Optional[Union[dict, DataFrame]]

dictionary or dataframe with the patching queries to perform during forward pass

None
batch_idx Optional[int]

index of the batch in the dataloader

None
external_cache Optional[ActivationCache]

external cache to use in the forward pass

None

Returns:

Name Type Description
hooks list[dict]

list of dictionaries with the component and the intervention to perform in the forward pass of the model

Source code in easyroutine/interpretability/hooked_model.py
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
def create_hooks(
    self,
    inputs,
    cache: ActivationCache,
    token_index: List,
    token_dict: Dict,
    # string_tokens: List[str],
    extraction_config: ExtractionConfig = ExtractionConfig(),
    patching_queries: Optional[Union[dict, pd.DataFrame]] = None,
    ablation_queries: Optional[Union[dict, pd.DataFrame]] = None,
    batch_idx: Optional[int] = None,
    external_cache: Optional[ActivationCache] = None,
):
    r"""
    Create the hooks to extract the activations of the model. The hooks will be added to the model and will be called in the forward pass of the model.

    Args:
        inputs (dict): dictionary with the inputs of the model (input_ids, attention_mask, pixel_values ...)
        cache (ActivationCache): dictionary where the activations of the model will be saved
        extracted_token_position (list[str]): list of tokens to extract the activations from (["last", "end-image", "start-image", "first"])
        string_tokens (list[str]): list of string tokens
        split_positions (Optional[list[int]]): list of split positions of the tokens
        attn_heads (Union[list[dict], Literal["all"]]): list of dictionaries with the layer and head to extract the attention pattern or 'all' to
        extract_attn_pattern (bool): if True, extract the attention pattern of the attn_heads passed
        extract_attn_out (bool): if True, extract the output of the attention of the attn_heads passed
        extract_attn_in (bool): if True, extract the input of the attention of the attn_heads passed
        extract_avg_attn_pattern (bool): if True, extract the average attention pattern of the model
        extract_avg_values_vectors_projected (bool): if True, extract the average values vectors projected of the model
        extract_resid_in (bool): if True, extract the input of the residual stream
        extract_resid_out (bool): if True, extract the output of the residual stream
        extract_values (bool): if True, extract the values of the attention
        extract_resid_mid (bool): if True, extract the output of the intermediate stream
        save_input_ids (bool): if True, save the input_ids in the cache
        extract_head_out (bool): if True, extract the output of the heads [DEPRECATED]
        extract_values_vectors_projected (bool): if True, extract the values vectors projected of the model
        extract_avg (bool): if True, extract the average of the activations
        ablation_queries (Optional[Union[dict, pd.DataFrame]]): dictionary or dataframe with the ablation queries to perform during forward pass
        patching_queries (Optional[Union[dict, pd.DataFrame]]): dictionary or dataframe with the patching queries to perform during forward pass
        batch_idx (Optional[int]): index of the batch in the dataloader
        external_cache (Optional[ActivationCache]): external cache to use in the forward pass

    Returns:
        hooks (list[dict]): list of dictionaries with the component and the intervention to perform in the forward pass of the model
    """
    hooks = []

    if extraction_config.extract_resid_out:
        # assert that the component exists in the model
        hooks += [
            {
                "component": self.model_config.residual_stream_hook_name.format(i),
                "intervention": partial(
                    save_resid_hook,
                    cache=cache,
                    cache_key=f"resid_out_{i}",
                    token_index=token_index,
                ),
            }
            for i in range(0, self.model_config.num_hidden_layers)
        ]
    if extraction_config.extract_resid_in:
        # assert that the component exists in the model
        hooks += [
            {
                "component": self.model_config.residual_stream_input_hook_name.format(
                    i
                ),
                "intervention": partial(
                    save_resid_hook,
                    cache=cache,
                    cache_key=f"resid_in_{i}",
                    token_index=token_index,
                ),
            }
            for i in range(0, self.model_config.num_hidden_layers)
        ]

    if extraction_config.extract_resid_in_post_layernorm:
        hooks += [
            {
                "component": self.model_config.residual_stream_input_post_layernorm_hook_name.format(
                    i
                ),
                "intervention": partial(
                    save_resid_hook,
                    cache=cache,
                    cache_key=f"resid_in_post_layernorm_{i}",
                    token_index=token_index,
                ),
            }
            for i in range(0, self.model_config.num_hidden_layers)
        ]

    if extraction_config.save_input_ids:
        hooks += [
            {
                "component": self.model_config.embed_tokens,
                "intervention": partial(
                    embed_hook,
                    cache=cache,
                    cache_key="input_ids",
                ),
            }
        ]

    if extraction_config.extract_values:
        hooks += [
            {
                "component": self.model_config.attn_value_hook_name.format(i),
                "intervention": partial(
                    save_resid_hook,
                    cache=cache,
                    cache_key=f"values_{i}",
                    token_index=token_index,
                ),
            }
            for i in range(0, self.model_config.num_hidden_layers)
        ]

    if extraction_config.extract_attn_in:
        hooks += [
            {
                "component": self.model_config.attn_in_hook_name.format(i),
                "intervention": partial(
                    save_resid_hook,
                    cache=cache,
                    cache_key=f"attn_in_{i}",
                    token_index=token_index,
                ),
            }
            for i in range(0, self.model_config.num_hidden_layers)
        ]

    if extraction_config.extract_attn_out:
        hooks += [
            {
                "component": self.model_config.attn_out_hook_name.format(i),
                "intervention": partial(
                    save_resid_hook,
                    cache=cache,
                    cache_key=f"attn_out_{i}",
                    token_index=token_index,
                ),
            }
            for i in range(0, self.model_config.num_hidden_layers)
        ]

    if extraction_config.extract_avg:
        # Define a hook that saves the activations of the residual stream
        raise NotImplementedError(
            "The hook for the average is not working with token_index as a list"
        )

        # hooks.extend(
        #     [
        #         {
        #             "component": self.model_config.residual_stream_hook_name.format(
        #                 i
        #             ),
        #             "intervention": partial(
        #                 avg_hook,
        #                 cache=cache,
        #                 cache_key="resid_avg_{}".format(i),
        #                 last_image_idx=last_image_idxs, #type
        #                 end_image_idx=end_image_idxs,
        #             ),
        #         }
        #         for i in range(0, self.model_config.num_hidden_layers)
        #     ]
        # )
    if extraction_config.extract_resid_mid:
        hooks += [
            {
                "component": self.model_config.intermediate_stream_hook_name.format(
                    i
                ),
                "intervention": partial(
                    save_resid_hook,
                    cache=cache,
                    cache_key=f"resid_mid_{i}",
                    token_index=token_index,
                ),
            }
            for i in range(0, self.model_config.num_hidden_layers)
        ]

        # if we want to extract the output of the heads

    # PATCHING
    if patching_queries:
        token_to_pos = partial(
            map_token_to_pos,
            _get_token_index=token_dict,
            # string_tokens=string_tokens,
            hf_tokenizer=self.hf_tokenizer,
            inputs=inputs,
        )
        patching_queries = preprocess_patching_queries(
            patching_queries=patching_queries,
            map_token_to_pos=token_to_pos,
            model_config=self.model_config,
        )

        def make_patch_tokens_hook(patching_queries_subset):
            """
            Creates a hook function to patch the activations in the
            current forward pass.
            """

            def patch_tokens_hook(module, input, output):
                if output is None:
                    if isinstance(input, tuple):
                        b = input[0]
                    else:
                        b = input
                else:
                    if isinstance(output, tuple):
                        b = output[0]
                    else:
                        b = output
                # Modify the tensor without affecting the computation graph
                act_to_patch = b.detach().clone()
                for pos, patch in zip(
                    patching_queries_subset["pos_token_to_patch"],
                    patching_queries_subset["patching_activations"],
                ):
                    act_to_patch[0, pos, :] = patching_queries_subset[
                        "patching_activations"
                    ].values[0]

                if output is None:
                    if isinstance(input, tuple):
                        return (act_to_patch, *input[1:])
                    elif input is not None:
                        return act_to_patch
                else:
                    if isinstance(output, tuple):
                        return (act_to_patch, *output[1:])
                    elif output is not None:
                        return act_to_patch
                raise ValueError("No output or input found")

            return patch_tokens_hook

        # Group the patching queries by 'layer' and 'act_type'
        grouped_queries = patching_queries.groupby(["layer", "activation_type"])

        for (layer, act_type), group in grouped_queries:
            hook_name_template = self.act_type_to_hook_name.get(
                act_type[:-3]
            )  # -3 because we remove {}
            if not hook_name_template:
                raise ValueError(f"Unknown activation type: {act_type}")
                # continue  # Skip unknown activation types

            hook_name = hook_name_template.format(layer)
            hook_function = partial(make_patch_tokens_hook(group))

            hooks.append(
                {
                    "component": hook_name,
                    "intervention": hook_function,
                }
            )

    if ablation_queries is not None:
        # TODO: debug and test the ablation. Check with ale
        token_to_pos = partial(
            map_token_to_pos,
            _get_token_index=token_dict,
            # string_tokens=string_tokens,
            hf_tokenizer=self.hf_tokenizer,
            inputs=inputs,
        )
        if self.config.batch_size > 1:
            raise ValueError("Ablation is not supported with batch size > 1")
        ablation_manager = AblationManager(
            model_config=self.model_config,
            token_to_pos=token_to_pos,
            inputs=inputs,
            model_attn_type=self.config.attn_implementation,
            ablation_queries=pd.DataFrame(ablation_queries)
            if isinstance(ablation_queries, dict)
            else ablation_queries,
        )
        hooks.extend(ablation_manager.main())

    if (
        extraction_config.extract_values_vectors_projected
        or extraction_config.extract_avg_values_vectors_projected
    ):
        if (
            extraction_config.attn_heads == "all"
        ):  # extract the output of all the heads
            hooks += [
                {
                    "component": self.model_config.attn_value_hook_name.format(i),
                    "intervention": partial(
                        projected_value_vectors_head,
                        cache=cache,
                        layer=i,
                        num_attention_heads=self.model_config.num_attention_heads,
                        num_key_value_heads=self.model_config.num_key_value_heads,
                        hidden_size=self.model_config.hidden_size,
                        d_head=self.model_config.head_dim,
                        out_proj_weight=get_attribute_from_name(
                            self.hf_model,
                            f"{self.model_config.attn_out_proj_weight.format(i)}",
                        ),
                        out_proj_bias=get_attribute_from_name(
                            self.hf_model,
                            f"{self.model_config.attn_out_proj_bias.format(i)}",
                        ),
                        head="all",
                    ),
                }
                for i in range(0, self.model_config.num_hidden_layers)
            ]
        elif isinstance(extraction_config.attn_heads, list):
            for el in extraction_config.attn_heads:
                head = el["head"]
                layer = el["layer"]
                hooks.append(
                    {
                        "component": self.model_config.attn_value_hook_name.format(
                            layer
                        ),
                        "intervention": partial(
                            projected_value_vectors_head,
                            cache=cache,
                            layer=layer,
                            num_attention_heads=self.model_config.num_attention_heads,
                            hidden_size=self.model_config.hidden_size,
                            out_proj_weight=self.hf_model.model.layers[
                                layer
                            ].self_attn.o_proj.weight,  # (d_model, d_model)
                            out_proj_bias=self.hf_model.model.layers[
                                layer
                            ].self_attn.o_proj.bias,  # (d_model)
                            head=head,
                        ),
                    }
                )
    if extraction_config.extract_avg_attn_pattern:
        if external_cache is None:
            self.logger.warning(
                """The external_cache is None. The average could not be computed since missing an external cache where store the iterations.
                Returning the base attn_pattern for this input...
                """
            )
            extract_attn_pattern = True
        elif batch_idx is None:
            self.logger.warning(
                """The batch_idx is None. The average could not be computed since missing the batch index.
                Returning the base attn_pattern for this input...
                """
            )
            extract_attn_pattern = True
        else:
            # move the cache to the same device of the model
            external_cache.to(self.first_device)
            hooks += [
                {
                    "component": self.model_config.attn_matrix_hook_name.format(i),
                    "intervention": partial(
                        avg_attention_pattern_head,
                        layer=i,
                        attn_pattern_current_avg=external_cache,
                        batch_idx=batch_idx,
                        cache=cache,
                        extract_avg_value=extraction_config.extract_avg_values_vectors_projected,
                    ),
                }
                for i in range(0, self.model_config.num_hidden_layers)
            ]
    if extraction_config.extract_attn_pattern:
        if extraction_config.attn_heads == "all":
            hooks += [
                {
                    "component": self.model_config.attn_matrix_hook_name.format(i),
                    "intervention": partial(
                        attention_pattern_head,
                        cache=cache,
                        layer=i,
                        head="all",
                    ),
                }
                for i in range(0, self.model_config.num_hidden_layers)
            ]
        else:
            hooks += [
                {
                    "component": self.model_config.attn_matrix_hook_name.format(
                        el["layer"]
                    ),
                    "intervention": partial(
                        attention_pattern_head,
                        cache=cache,
                        layer=el["layer"],
                        head=el["head"],
                    ),
                }
                for el in extraction_config.attn_heads
            ]

        # if additional hooks are not empty, add them to the hooks list
    if self.additional_hooks:
        hooks += self.additional_hooks
    return hooks

device()

Return the device of the model. If the model is in multiple devices, it will return the first device

Returns:

Name Type Description
device

the device of the model

Source code in easyroutine/interpretability/hooked_model.py
323
324
325
326
327
328
329
330
331
332
333
def device(self):
    r"""
    Return the device of the model. If the model is in multiple devices, it will return the first device

    Args:
        None

    Returns:
        device: the device of the model
    """
    return self.first_device

eval()

Set the model in evaluation mode

Source code in easyroutine/interpretability/hooked_model.py
317
318
319
320
321
def eval(self):
    r"""
    Set the model in evaluation mode
    """
    self.hf_model.eval()

extract_cache(dataloader, target_token_positions, batch_saver=lambda x: None, move_to_cpu_after_forward=True, **kwargs)

Method to extract the activations of the model from a specific dataset. Compute a forward pass for each batch of the dataloader and save the activations in the cache.

Parameters:

Name Type Description Default
dataloader iterable

dataloader with the dataset. Each element of the dataloader must be a dictionary that contains the inputs that the model expects (input_ids, attention_mask, pixel_values ...)

required
extracted_token_position list[str]

list of tokens to extract the activations from (["last", "end-image", "start-image", "first"])

required
batch_saver Callable

function to save in the cache the additional element from each elemtn of the batch (For example, the labels of the dataset)

lambda x: None
move_to_cpu_after_forward bool

if True, move the activations to the cpu right after the any forward pass of the model

True
**kwargs

additional arguments to control hooks generation, basically accept any argument handled by the .forward method (i.e. ablation_queries, patching_queries, extract_resid_in)

{}

Returns:

Name Type Description
final_cache

dictionary with the activations of the model. The keys are the names of the activations and the values are the activations themselve

Examples:

>>> dataloader = [{"input_ids": torch.tensor([[101, 1234, 1235, 102]]), "attention_mask": torch.tensor([[1, 1, 1, 1]]), "labels": torch.tensor([1])}, ...]
>>> model.extract_cache(dataloader, extracted_token_position=["last"], batch_saver=lambda x: {"labels": x["labels"]})
{'resid_out_0': tensor([[[0.1, 0.2, 0.3, 0.4]]], grad_fn=<CopyBackwards>), 'labels': tensor([1]), 'mapping_index': {'last': [0]}}
Source code in easyroutine/interpretability/hooked_model.py
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
@torch.no_grad()
def extract_cache(
    self,
    dataloader,
    target_token_positions: List[str],
    batch_saver: Callable = lambda x: None,
    move_to_cpu_after_forward: bool = True,
    # save_other_batch_elements: bool = False,
    **kwargs,
):
    r"""
    Method to extract the activations of the model from a specific dataset. Compute a forward pass for each batch of the dataloader and save the activations in the cache.

    Args:
        dataloader (iterable): dataloader with the dataset. Each element of the dataloader must be a dictionary that contains the inputs that the model expects (input_ids, attention_mask, pixel_values ...)
        extracted_token_position (list[str]): list of tokens to extract the activations from (["last", "end-image", "start-image", "first"])
        batch_saver (Callable): function to save in the cache the additional element from each elemtn of the batch (For example, the labels of the dataset)
        move_to_cpu_after_forward (bool): if True, move the activations to the cpu right after the any forward pass of the model
        **kwargs: additional arguments to control hooks generation, basically accept any argument handled by the `.forward` method (i.e. ablation_queries, patching_queries, extract_resid_in)

    Returns:
        final_cache: dictionary with the activations of the model. The keys are the names of the activations and the values are the activations themselve

    Examples:
        >>> dataloader = [{"input_ids": torch.tensor([[101, 1234, 1235, 102]]), "attention_mask": torch.tensor([[1, 1, 1, 1]]), "labels": torch.tensor([1])}, ...]
        >>> model.extract_cache(dataloader, extracted_token_position=["last"], batch_saver=lambda x: {"labels": x["labels"]})
        {'resid_out_0': tensor([[[0.1, 0.2, 0.3, 0.4]]], grad_fn=<CopyBackwards>), 'labels': tensor([1]), 'mapping_index': {'last': [0]}}
    """

    self.logger.info("Extracting cache", std_out=True)

    # get the function to save in the cache the additional element from the batch sime

    self.logger.info("Forward pass started", std_out=True)
    all_cache = ActivationCache()  # a list of dictoionaries, each dictionary contains the activations of the model for a batch (so a dict of tensors)
    attn_pattern = (
        ActivationCache()
    )  # Initialize the dictionary to hold running averages

    example_dict = {}
    n_batches = 0  # Initialize batch counter

    for batch in tqdm(dataloader, total=len(dataloader), desc="Extracting cache:"):
        # log_memory_usage("Extract cache - Before batch")
        # tokens, others = batch
        # inputs = {k: v.to(self.first_device) for k, v in tokens.items()}

        # get input_ids, attention_mask, and if available, pixel_values from batch (that is a dictionary)
        # then move them to the first device
        inputs = self.input_handler.prepare_inputs(batch, self.first_device)
        others = {k: v for k, v in batch.items() if k not in inputs}

        cache = self.forward(
            inputs,
            target_token_positions=target_token_positions,
            split_positions=batch.get("split_positions", None),
            external_cache=attn_pattern,
            batch_idx=n_batches,
            **kwargs,
        )
        # possible memory leak from here -___--------------->
        additional_dict = batch_saver(others)
        if additional_dict is not None:
            # cache = {**cache, **additional_dict}
            cache.update(additional_dict)

        if move_to_cpu_after_forward:
            cache.cpu()

        n_batches += 1  # Increment batch counter# Process and remove "pattern_" keys from cache
        all_cache.cat(cache)

        del cache
        inputs = self.input_handler.prepare_inputs(batch, "cpu")
        del inputs
        torch.cuda.empty_cache()

    self.logger.info(
        "Forward pass finished - started to aggregate different batch", std_out=True
    )
    all_cache.update(attn_pattern)
    all_cache["example_dict"] = example_dict
    self.logger.info("Aggregation finished", std_out=True)

    torch.cuda.empty_cache()
    return all_cache

forward(inputs, target_token_positions=['last'], split_positions=None, extraction_config=ExtractionConfig(), ablation_queries=None, patching_queries=None, external_cache=None, attn_heads='all', batch_idx=None, move_to_cpu=False)

Forward pass of the model. It will extract the activations of the model and save them in the cache. It will also perform ablation and patching if needed.

Parameters:

Name Type Description Default
inputs dict

dictionary with the inputs of the model (input_ids, attention_mask, pixel_values ...)

required
target_token_positions list[str]

list of tokens to extract the activations from (["last", "end-image", "start-image", "first"])

['last']
split_positions Optional[list[int]]

list of split positions of the tokens

None
extraction_config ExtractionConfig

configuration of the extraction of the activations of the model

ExtractionConfig()
ablation_queries Optional[DataFrame | None]

dataframe with the ablation queries to perform during forward pass

None
patching_queries Optional[DataFrame | None]

dataframe with the patching queries to perform during forward pass

None
external_cache Optional[ActivationCache]

external cache to use in the forward pass

None
attn_heads Union[list[dict], Literal['all']]

list of dictionaries with the layer and head to extract the attention pattern or 'all' to

'all'
batch_idx Optional[int]

index of the batch in the dataloader

None
move_to_cpu bool

if True, move the activations to the cpu

False

Returns:

Name Type Description
cache ActivationCache

dictionary with the activations of the model

Examples:

>>> inputs = {"input_ids": torch.tensor([[101, 1234, 1235, 102]]), "attention_mask": torch.tensor([[1, 1, 1, 1]])}
>>> model.forward(inputs, target_token_positions=["last"], extract_resid_out=True)
{'resid_out_0': tensor([[[0.1, 0.2, 0.3, 0.4]]], grad_fn=<CopyBackwards>), 'input_ids': tensor([[101, 1234, 1235, 102]]), 'mapping_index': {'last': [0]}}
Source code in easyroutine/interpretability/hooked_model.py
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
@torch.no_grad()
def forward(
    self,
    inputs,
    target_token_positions: List[str] = ["last"],
    split_positions: Optional[List[int]] = None,
    extraction_config: ExtractionConfig = ExtractionConfig(),
    ablation_queries: Optional[pd.DataFrame | None] = None,
    patching_queries: Optional[pd.DataFrame | None] = None,
    external_cache: Optional[ActivationCache] = None,
    attn_heads: Union[list[dict], Literal["all"]] = "all",
    batch_idx: Optional[int] = None,
    move_to_cpu: bool = False,
) -> ActivationCache:
    r"""
    Forward pass of the model. It will extract the activations of the model and save them in the cache. It will also perform ablation and patching if needed.

    Args:
        inputs (dict): dictionary with the inputs of the model (input_ids, attention_mask, pixel_values ...)
        target_token_positions (list[str]): list of tokens to extract the activations from (["last", "end-image", "start-image", "first"])
        split_positions (Optional[list[int]]): list of split positions of the tokens
        extraction_config (ExtractionConfig): configuration of the extraction of the activations of the model
        ablation_queries (Optional[pd.DataFrame | None]): dataframe with the ablation queries to perform during forward pass
        patching_queries (Optional[pd.DataFrame | None]): dataframe with the patching queries to perform during forward pass
        external_cache (Optional[ActivationCache]): external cache to use in the forward pass
        attn_heads (Union[list[dict], Literal["all"]]): list of dictionaries with the layer and head to extract the attention pattern or 'all' to
        batch_idx (Optional[int]): index of the batch in the dataloader
        move_to_cpu (bool): if True, move the activations to the cpu

    Returns:
        cache (ActivationCache): dictionary with the activations of the model

    Examples:
        >>> inputs = {"input_ids": torch.tensor([[101, 1234, 1235, 102]]), "attention_mask": torch.tensor([[1, 1, 1, 1]])}
        >>> model.forward(inputs, target_token_positions=["last"], extract_resid_out=True)
        {'resid_out_0': tensor([[[0.1, 0.2, 0.3, 0.4]]], grad_fn=<CopyBackwards>), 'input_ids': tensor([[101, 1234, 1235, 102]]), 'mapping_index': {'last': [0]}}
    """

    if target_token_positions is None and extraction_config.is_not_empty():
        raise ValueError(
            "target_token_positions must be passed if we want to extract the activations of the model"
        )
    cache = ActivationCache()
    string_tokens = self.to_string_tokens(
        self.input_handler.get_input_ids(inputs).squeeze()
    )
    token_index, token_dict = TokenIndex(
        self.config.model_name, split_positions=split_positions
    ).get_token_index(
        tokens=target_token_positions,
        string_tokens=string_tokens,
        return_type="all",
    )
    assert isinstance(token_index, list), "Token index must be a list"
    assert isinstance(token_dict, dict), "Token dict must be a dict"

    hooks = self.create_hooks(  # TODO: add **kwargs
        inputs=inputs,
        token_dict=token_dict,
        token_index=token_index,
        cache=cache,
        extraction_config=extraction_config,
        ablation_queries=ablation_queries,
        patching_queries=patching_queries,
        batch_idx=batch_idx,
        external_cache=external_cache,
    )

    hook_handlers = self.set_hooks(hooks)
    inputs = self.input_handler.prepare_inputs(
        inputs, self.first_device, self.config.torch_dtype
    )
    # forward pass
    output = self.hf_model(
        **inputs,
        # output_original_output=True,
        # output_attentions=extract_attn_pattern,
    )

    cache["logits"] = output.logits[:, -1]
    # since attention_patterns are returned in the output, we need to adapt to the cache structure
    if move_to_cpu:
        cache.cpu()
        if external_cache is not None:
            external_cache.cpu()

    mapping_index = {}
    current_index = 0
    for token in target_token_positions:
        mapping_index[token] = []
        if isinstance(token_dict, int):
            mapping_index[token].append(current_index)
            current_index += 1
        elif isinstance(token_dict, dict):
            for idx in range(len(token_dict[token])):
                mapping_index[token].append(current_index)
                current_index += 1
        elif isinstance(token_dict, list):
            for idx in range(len(token_dict)):
                mapping_index[token].append(current_index)
                current_index += 1
        else:
            raise ValueError("Token dict must be an int, a dict or a list")
    cache["mapping_index"] = mapping_index

    self.remove_hooks(hook_handlers)

    return cache

generate(inputs, generation_config=None, target_token_positions=None, return_text=False, **kwargs)

WARNING: This method could be buggy in the return dict of the output. Pay attention!

Generate new tokens using the model and the inputs passed as argument Args: inputs (dict): dictionary with the inputs of the model {"input_ids": ..., "attention_mask": ..., "pixel_values": ...} generation_config (Optional[GenerationConfig]): original hf dataclass with the generation configuration **kwargs: additional arguments to control hooks generation (i.e. ablation_queries, patching_queries) Returns: output (ActivationCache): dictionary with the output of the model

Examples:

>>> inputs = {"input_ids": torch.tensor([[101, 1234, 1235, 102]]), "attention_mask": torch.tensor([[1, 1, 1, 1]])}
>>> model.generate(inputs)
{'sequences': tensor([[101, 1234, 1235, 102]])}
Source code in easyroutine/interpretability/hooked_model.py
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
@torch.no_grad()
def generate(
    self,
    inputs,
    generation_config: Optional[GenerationConfig] = None,
    target_token_positions: Optional[List[str]] = None,
    return_text: bool = False,
    **kwargs,
) -> ActivationCache:
    r"""
    __WARNING__: This method could be buggy in the return dict of the output. Pay attention!

    Generate new tokens using the model and the inputs passed as argument
    Args:
        inputs (dict): dictionary with the inputs of the model {"input_ids": ..., "attention_mask": ..., "pixel_values": ...}
        generation_config (Optional[GenerationConfig]): original hf dataclass with the generation configuration
        **kwargs: additional arguments to control hooks generation (i.e. ablation_queries, patching_queries)
    Returns:
        output (ActivationCache): dictionary with the output of the model

    Examples:
        >>> inputs = {"input_ids": torch.tensor([[101, 1234, 1235, 102]]), "attention_mask": torch.tensor([[1, 1, 1, 1]])}
        >>> model.generate(inputs)
        {'sequences': tensor([[101, 1234, 1235, 102]])}
    """
    # Initialize cache for logits
    # TODO FIX THIS. IT is not general and it is not working
    # raise NotImplementedError("This method is not working. It needs to be fixed")
    hook_handlers = None
    if target_token_positions is not None:
        string_tokens = self.to_string_tokens(
            self.input_handler.get_input_ids(inputs).squeeze()
        )
        token_index, token_dict = TokenIndex(
            self.config.model_name, split_positions=None
        ).get_token_index(tokens=[], string_tokens=string_tokens, return_type="all")
        assert isinstance(token_index, list), "Token index must be a list"
        assert isinstance(token_dict, dict), "Token dict must be a dict"
        hooks = self.create_hooks(
            inputs=inputs,
            token_dict=token_dict,
            token_index=token_index,
            cache=ActivationCache(),
            **kwargs,
        )
        hook_handlers = self.set_hooks(hooks)

    inputs = self.input_handler.prepare_inputs(inputs, self.first_device)

    model_to_use = (
        self.hf_language_model if self.use_language_model else self.hf_model
    )
    assert model_to_use is not None, "Error: The model is not loaded"

    output = model_to_use.generate(
        **inputs,  # type: ignore
        generation_config=generation_config,
        output_scores=False,  # type: ignore
    )
    if hook_handlers:
        self.remove_hooks(hook_handlers)
    if return_text:
        return self.hf_tokenizer.decode(output[0], skip_special_tokens=True)  # type: ignore
    return output  # type: ignore

get_module_from_string(component)

Return a module from the model given the string of the module.

Parameters:

Name Type Description Default
component str

the string of the module

required

Returns:

Name Type Description
module Module

the module of the model

Examples:

>>> model.get_module_from_string("model.layers[0].self_attn")
BertAttention(...)
Source code in easyroutine/interpretability/hooked_model.py
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
def get_module_from_string(self, component: str):
    r"""
    Return a module from the model given the string of the module.

    Args:
        component (str): the string of the module

    Returns:
        module (torch.nn.Module): the module of the model

    Examples:
        >>> model.get_module_from_string("model.layers[0].self_attn")
        BertAttention(...)
    """
    return self.hf_model.retrieve_modules_from_names(component)

get_processor()

Return the processor of the model (None if the model does not have a processor, i.e. text only model)

Returns:

Name Type Description
processor

the processor of the model

Source code in easyroutine/interpretability/hooked_model.py
303
304
305
306
307
308
309
310
311
312
313
314
315
def get_processor(self):
    r"""
    Return the processor of the model (None if the model does not have a processor, i.e. text only model)

    Args:
        None

    Returns:
        processor: the processor of the model
    """
    if self.processor is None:
        raise ValueError("The model does not have a processor")
    return self.processor

get_text_tokenizer()

If the tokenizer is a processor, return just the tokenizer. If the tokenizer is a tokenizer, return the tokenizer

Returns:

Name Type Description
tokenizer

the tokenizer of the model

Source code in easyroutine/interpretability/hooked_model.py
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
def get_text_tokenizer(self):
    r"""
    If the tokenizer is a processor, return just the tokenizer. If the tokenizer is a tokenizer, return the tokenizer

    Args:
        None

    Returns:
        tokenizer: the tokenizer of the model
    """
    if self.processor is not None:
        if not hasattr(self.processor, "tokenizer"):
            raise ValueError("The processor does not have a tokenizer")
        return self.processor.tokenizer  # type: ignore
    return self.hf_tokenizer

register_forward_hook(component, hook_function)

Add a new hook to the model. The hook will be called in the forward pass of the model.

Parameters:

Name Type Description Default
component str

the component of the model where the hook will be added.

required
hook_function Callable

the function that will be called in the forward pass of the model. The function must have the following signature: def hook_function(module, input, output): pass

required

Returns:

Type Description

None

Examples:

>>> def hook_function(module, input, output):
>>>     # your code here
>>>     pass
>>> model.register_forward_hook("model.layers[0].self_attn", hook_function)
Source code in easyroutine/interpretability/hooked_model.py
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
def register_forward_hook(self, component: str, hook_function: Callable):
    r"""
    Add a new hook to the model. The hook will be called in the forward pass of the model.

    Args:
        component (str): the component of the model where the hook will be added.
        hook_function (Callable): the function that will be called in the forward pass of the model. The function must have the following signature:
            def hook_function(module, input, output):
                pass

    Returns:
        None

    Examples:
        >>> def hook_function(module, input, output):
        >>>     # your code here
        >>>     pass
        >>> model.register_forward_hook("model.layers[0].self_attn", hook_function)
    """
    self.additional_hooks.append(
        {
            "component": component,
            "intervention": hook_function,
        }
    )

remove_hooks(hook_handlers)

Remove all the hooks from the model

Source code in easyroutine/interpretability/hooked_model.py
 996
 997
 998
 999
1000
1001
def remove_hooks(self, hook_handlers):
    """
    Remove all the hooks from the model
    """
    for hook_handler in hook_handlers:
        hook_handler.remove()

set_hooks(hooks)

Set the hooks in the model

Parameters:

Name Type Description Default
hooks list[dict]

list of dictionaries with the component and the intervention to perform in the forward pass of the model

required

Returns:

Name Type Description
hook_handlers list

list of hook handlers

Source code in easyroutine/interpretability/hooked_model.py
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
def set_hooks(self, hooks: List[Dict[str, Any]]):
    r"""
    Set the hooks in the model

    Args:
        hooks (list[dict]): list of dictionaries with the component and the intervention to perform in the forward pass of the model

    Returns:
        hook_handlers (list): list of hook handlers
    """

    if len(hooks) == 0:
        return []

    hook_handlers = []
    for hook in hooks:
        component = hook["component"]
        hook_function = hook["intervention"]

        # get the last module string (.input or .output) and remove it from the component string
        last_module = component.split(".")[-1]
        # now remove the last module from the component string
        component = component[: -len(last_module) - 1]
        # check if the component exists in the model
        try:
            self.assert_module_exists(component)
        except ValueError as e:
            self.logger.warning(
                f"Error: {e}. Probably the module {component} do not exists in the model. If the module is the attention_matrix_hook, try callig HookedModel.set_custom_hooks() or setting attn_implementation == 'custom_eager'.  Now we will skip the hook for the component {component}",
                std_out=True,
            )
            continue
        if last_module == "input":
            hook_handlers.append(
                get_module_by_path(
                    self.hf_model, component
                ).register_forward_pre_hook(
                    partial(hook_function, output=None), with_kwargs=True
                )
            )
        elif last_module == "output":
            hook_handlers.append(
                get_module_by_path(self.hf_model, component).register_forward_hook(
                    hook_function, with_kwargs=True
                )
            )

    return hook_handlers

to_string_tokens(tokens)

Transform a list or a tensor of tokens in a list of string tokens.

Parameters:

Name Type Description Default
tokens Union[list, Tensor]

the tokens to transform in string tokens

required

Returns:

Name Type Description
string_tokens list

the list of string tokens

Examples:

>>> tokens = [101, 1234, 1235, 102]
>>> model.to_string_tokens(tokens)
['[CLS]', 'hello', 'world', '[SEP]']
Source code in easyroutine/interpretability/hooked_model.py
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
def to_string_tokens(
    self,
    tokens: Union[list, torch.Tensor],
):
    r"""
    Transform a list or a tensor of tokens in a list of string tokens.

    Args:
        tokens (Union[list, torch.Tensor]): the tokens to transform in string tokens

    Returns:
        string_tokens (list): the list of string tokens

    Examples:
        >>> tokens = [101, 1234, 1235, 102]
        >>> model.to_string_tokens(tokens)
        ['[CLS]', 'hello', 'world', '[SEP]']
    """
    if isinstance(tokens, torch.Tensor):
        if tokens.dim() == 1:
            tokens = tokens.tolist()
        else:
            tokens = tokens.squeeze().tolist()
    string_tokens = []
    for tok in tokens:
        string_tokens.append(self.hf_tokenizer.decode(tok))  # type: ignore
    return string_tokens

HookedModelConfig dataclass

Configuration of the HookedModel

Parameters:

Name Type Description Default
model_name str

the name of the model to load

required
device_map Literal['balanced', 'cuda', 'cpu', 'auto']

the device to use for the model

'balanced'
torch_dtype dtype

the dtype of the model

bfloat16
attn_implementation Literal['eager', 'flash_attention_2']

the implementation of the attention

'custom_eager'
batch_size int

the batch size of the model. FOR NOW, ONLY BATCH SIZE 1 IS SUPPORTED. USE AT YOUR OWN RISK

1
Source code in easyroutine/interpretability/hooked_model.py
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
@dataclass
class HookedModelConfig:
    """
    Configuration of the HookedModel

    Arguments:
        model_name (str): the name of the model to load
        device_map (Literal["balanced", "cuda", "cpu", "auto"]): the device to use for the model
        torch_dtype (torch.dtype): the dtype of the model
        attn_implementation (Literal["eager", "flash_attention_2"]): the implementation of the attention
        batch_size (int): the batch size of the model. FOR NOW, ONLY BATCH SIZE 1 IS SUPPORTED. USE AT YOUR OWN RISK
    """

    model_name: str
    device_map: Literal["balanced", "cuda", "cpu", "auto"] = "balanced"
    torch_dtype: torch.dtype = torch.bfloat16
    attn_implementation: Literal["eager", "custom_eager"] = (
        "custom_eager"  # TODO: add flash_attention_2 in custom module to support it
    )
    batch_size: int = 1