Skip to content

Hooks

ablate_pos_keep_self_attn_hook(module, args, kwargs, output, ablation_queries)

Hook function to ablate the tokens in the attention mask but keeping the self attn weigths. It will set to 0 the row of tokens to ablate except for the las position

Source code in easyroutine/interpretability/hooks.py
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
def ablate_pos_keep_self_attn_hook(
    module,
    args,
    kwargs,
    output,
    ablation_queries: pd.DataFrame,
):
    r"""
    Hook function to ablate the tokens in the attention
    mask but keeping the self attn weigths.
    It will set to 0 the row of tokens to ablate except for
    the las position
    """
    b = process_args_kwargs_output(args, kwargs, output)
    Warning("This function is deprecated. Use ablate_attn_mat_hook instead")
    attn_matrix = b.data
    # initial_shape = attn_matrix.shape

    for head, pos in zip(
        ablation_queries["head"], ablation_queries["pos_token_to_ablate"]
    ):
        attn_matrix[0, head, pos, :-1] = 0

    b.copy_(attn_matrix)

    return b

attention_pattern_head(module, args, kwargs, output, token_indexes, layer, cache, head='all', act_on_input=False, attn_pattern_avg='none', attn_pattern_row_partition=None)

Hook function to extract the attention pattern of the heads. It will extract the attention pattern. As the other hooks, it will save the activations in the cache (a global variable out the scope of the function)

Parameters:

Name Type Description Default
- args

the input args of the hook function

required
- kwargs

the input kwargs of the hook function

required
- output

the output of the hook function

required
- token_indexes(List[Tuple])

the indexes of the tokens to extract the attention pattern

required
- layer (int

the layer of the model

required
- cache (ActivationCache

the cache where to save the activations

required
- head (Union[str, int]

the head of the model. If "all" is passed, it will extract all the heads of the layer

required
- attn_pattern_avg (Literal["mean", "sum", "baseline_ratio", "none"]

the method to average the attention pattern

required
- attn_pattern_row_partition (List[int]

the indexes of the tokens to partition the attention pattern

required
Avg strategies

If the attn_pattern_avg is not "none", the attention pattern is divided in blocks and the average value of each block is computed, using the method specified in attn_pattern_avg. The idea is to partition the attention pattern into groups of tokens, and then compute a single average value for each group. The pattern is divided into len(attn_pattern_row_partition) x len(token_indexes) blocks, where each block is a subset of the attention pattern. Each block B_ij is defined to have the indeces of the rows in attn_pattern_row_partition[i] and the columns in token_indexes[j]. If attn_pattern_row_partition is None, then the rows are the same as token_indexes.

0| a_00 0 0 0 0 0 0 token_indexes = [(1,3), (4)] 1| a_10 a_11 0 0 0 0 0 attn_pattern_row_partition = [(0,1)] 2| a_20 a_21 a_22 0 0 0 0 3| a_30 a_31 a_32 a_33 0 0 0 4| a_40 a_41 a_42 a_43 a_44 0 0 5| a_50 a_51 a_52 a_53 a_54 a_55 0 6| a_60 a_61 a_62 a_63 a_64 a_65 a_66


0    1     2   3     4    5    6
  • Block B_00:
    • Rows: 0,1
    • Columns: 1,2,3
    • Block: [a_01, a_02, a_03, a_11, a_12, a_13]
  • Block B_01:
    • Rows: 0,1
    • Columns: 4
    • Block: [a_04, a_14]

If attn_pattern_avg is "mean", the average value for each block is computed as the mean of the block, so the output will be: batch n_row_blocks n_col_blocks So in this case, the output will be: batch 1 2 where the first value is the average of the first block and the second value is the average of the second block.

The method to compute a single value for each block is specified by the attn_pattern_avg parameter, and can be one of the following: - "mean": Compute the mean of the block. - "sum": Compute the sum of the block. - "baseline_ratio": Compute the ratio of the observed average attention to the expected average attention. The expected average attention is computed by assuming that attention is uniform across the block. So, for each row in attn_pattern_row_partition, we compute the fraction of allowed keys that belong to token_indexes. The expected average attention is the sum of these fractions divided by the number of rows. The final ratio is the observed average attention divided by the expected average attention.

Source code in easyroutine/interpretability/hooks.py
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
def attention_pattern_head(
    module,
    args,
    kwargs,
    output,
    token_indexes,
    layer,
    cache,
    head: Union[str, int] = "all",
    act_on_input=False,
    attn_pattern_avg: Literal["mean", "sum", "baseline_ratio", "none"] = "none",
    attn_pattern_row_partition=None,
):
    """
    Hook function to extract the attention pattern of the heads. It will extract the attention pattern.
    As the other hooks, it will save the activations in the cache (a global variable out the scope of the function)

    Arguments:
        - args: the input args of the hook function
        - kwargs: the input kwargs of the hook function
        - output: the output of the hook function
        - token_indexes (List[Tuple]) : the indexes of the tokens to extract the attention pattern
        - layer (int): the layer of the model
        - cache (ActivationCache): the cache where to save the activations
        - head (Union[str, int]): the head of the model. If "all" is passed, it will extract all the heads of the layer
        - attn_pattern_avg (Literal["mean", "sum", "baseline_ratio", "none"]): the method to average the attention pattern
        - attn_pattern_row_partition (List[int]): the indexes of the tokens to partition the attention pattern

    Avg strategies:
        If the attn_pattern_avg is not "none", the attention pattern is divided in blocks and the average value of each block is computed, using the method specified in attn_pattern_avg.
        The idea is to partition the attention pattern into groups of tokens, and then compute a single average value for each group. The pattern is divided into len(attn_pattern_row_partition) x len(token_indexes) blocks, where each block is a subset of the attention pattern. Each block B_ij is defined to have the indeces of the rows in attn_pattern_row_partition[i] and the columns in token_indexes[j]. If attn_pattern_row_partition is None, then the rows are the same as token_indexes.

        0| a_00 0    0    0    0    0    0              token_indexes = [(1,3), (4)]
        1| a_10 a_11 0    0    0    0    0              attn_pattern_row_partition = [(0,1)]
        2| a_20 a_21 a_22 0    0    0    0
        3| a_30 a_31 a_32 a_33 0    0    0
        4| a_40 a_41 a_42 a_43 a_44 0    0
        5| a_50 a_51 a_52 a_53 a_54 a_55 0
        6| a_60 a_61 a_62 a_63 a_64 a_65 a_66
           ------------------------------
            0    1     2   3     4    5    6

        - Block B_00:
            - Rows: 0,1
            - Columns: 1,2,3
            - Block: [a_01, a_02, a_03, a_11, a_12, a_13]
        - Block B_01:
            - Rows: 0,1
            - Columns: 4
            - Block: [a_04, a_14]


        If attn_pattern_avg is "mean", the average value for each block is computed as the mean of the block, so the output will be: batch n_row_blocks n_col_blocks
        So in this case, the output will be: batch 1 2 where the first value is the average of the first block and the second value is the average of the second block.

        The method to compute a single value for each block is specified by the attn_pattern_avg parameter, and can be one of the following:
        - "mean": Compute the mean of the block.
        - "sum": Compute the sum of the block.
        - "baseline_ratio": Compute the ratio of the observed average attention to the expected average attention. The expected average attention is computed by assuming that attention is uniform across the block. So, for each row in attn_pattern_row_partition, we compute the fraction of allowed keys that belong to token_indexes. The expected average attention is the sum of these fractions divided by the number of rows. The final ratio is the observed average attention divided by the expected average attention.


    """
    # first get the attention pattern
    b = process_args_kwargs_output(args, kwargs, output)

    attn_pattern = b.data.detach().clone()  # (batch, num_heads,seq_len, seq_len)

    if head == "all":
        head_indices = range(attn_pattern.size(1))
    else:
        head_indices = [head]

    if attn_pattern_row_partition is not None:
        token_indexes_group1 = attn_pattern_row_partition
    else:
        token_indexes_group1 = token_indexes

    # For each token group (each tuple in token_indexes), compute a single average value.
    if attn_pattern_row_partition is not None:
        for h in head_indices:
            # For head h, pattern has shape [batch, seq_len, seq_len].
            group_avgs = []

            # Generate all combinations of groups
            for group1 in token_indexes_group1:
                for group2 in token_indexes:
                    # Extract the attention block for this combination.
                    attn_block = attn_pattern[:, h, list(group1), :][:, :, list(group2)]

                    # Depending on the selected averaging method, compute a metric.
                    if attn_pattern_avg == "mean":
                        # Simple mean over the block.
                        avg_val = torch.mean(attn_block, dim=(-2, -1))  # shape: [batch]

                    elif attn_pattern_avg == "sum":
                        # Simple sum over the block.
                        avg_val = torch.sum(attn_block, dim=(-2, -1))

                    elif attn_pattern_avg == "baseline_ratio":
                        # ---- Step 1. Compute the observed average attention in the block.
                        observed_val = torch.mean(
                            attn_block, dim=(-2, -1)
                        )  # shape: [batch]

                        # ---- Step 2. Compute the baseline expectation.
                        # For each row (i.e. token index) in group1, we calculate the fraction of allowed keys
                        # that belong to group2. Because the attention is lower-triangular,
                        # a row with index 'i' can only attend to tokens with indices <= i.
                        # Thus, for each row 'i' in group1, the expected fraction (if uniform) is:
                        #      (# of tokens in group2 with index <= i) / (i+1)
                        baseline_list = []
                        for i in group1:
                            # Count the number of tokens in group2 that are allowed for row i.
                            allowed_count = sum(1 for j in group2 if j <= i)
                            # Total keys available for row i (assuming indices start at 0).
                            total_allowed = i + 1
                            # Avoid division by zero (should not happen if i>=0).
                            baseline_ratio = (
                                allowed_count / total_allowed
                                if total_allowed > 0
                                else 0.0
                            )
                            baseline_list.append(baseline_ratio)

                        # Average the per-row baseline over all rows in group1.
                        # This represents the expected average attention to group2 if it were uniformly distributed.
                        baseline_val = sum(baseline_list) / len(baseline_list)

                        # ---- Step 3. Compute the final ratio.
                        # We compare the observed average attention to the baseline expectation.
                        # A value > 1 means that, on average, attention in this block is higher than expected.
                        # Expand baseline_val to match the batch shape for element-wise division.
                        baseline_tensor = torch.tensor(
                            baseline_val, device=observed_val.device
                        ).expand_as(observed_val)
                        avg_val = observed_val / baseline_tensor
                    else:
                        avg_val = attn_block

                    if attn_pattern_avg != "none":
                        # Append the computed metric for this block (keeping the batch dimension).
                        group_avgs.append(avg_val.unsqueeze(1))  # shape: [batch, 1]
                    else:
                        # If no averaging is requested, store the block directly.
                        group_avgs.append(attn_block)

            if attn_pattern_avg != "none":
                pattern_avg = einops.rearrange(
                    torch.cat(group_avgs, dim=1),
                    "batch (G1 G2) -> batch G1 G2",
                    G1=len(token_indexes_group1),
                    G2=len(token_indexes),
                )
            else:
                try:
                    pattern_avg = torch.cat(group_avgs, dim=1)
                except:
                    raise ValueError(
                        f"Error concatenating group_avgs with shapes {[x.shape for x in group_avgs]}"
                    )

            # Add the pattern to the cache
            cache[f"pattern_L{layer}H{h}"] = pattern_avg
    else:
        # Without averaging, flatten token_indexes into one list.
        flatten_indexes = [item for tup in token_indexes for item in tup]
        for h in head_indices:
            # Slice both token dimensions using the flattened indexes.
            pattern_slice = attn_pattern[:, h, flatten_indexes][:, :, flatten_indexes]
            cache[f"pattern_L{layer}H{h}"] = pattern_slice

avg_attention_pattern_head(module, args, kwargs, output, token_indexes, layer, attn_pattern_current_avg, batch_idx, cache, avg=False, extract_avg_value=False, act_on_input=False)

Hook function to extract the average attention pattern of the heads. It will extract the attention pattern and then average it. As the other hooks, it will save the activations in the cache (a global variable out the scope of the function)

Parameters:

Name Type Description Default
- b

the input of the hook function. It's the output of the attention pattern of the heads

required
- s

the state of the hook function. It's the state of the model

required
- layer

the layer of the model

required
- head

the head of the model

required
- attn_pattern_current_avg

the current average attention pattern

required
Source code in easyroutine/interpretability/hooks.py
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
def avg_attention_pattern_head(
    module,
    args,
    kwargs,
    output,
    token_indexes,
    layer,
    attn_pattern_current_avg,
    batch_idx,
    cache,
    avg: bool = False,
    extract_avg_value: bool = False,
    act_on_input=False,
):
    """
    Hook function to extract the average attention pattern of the heads. It will extract the attention pattern and then average it.
    As the other hooks, it will save the activations in the cache (a global variable out the scope of the function)

    Args:
        - b: the input of the hook function. It's the output of the attention pattern of the heads
        - s: the state of the hook function. It's the state of the model
        - layer: the layer of the model
        - head: the head of the model
        - attn_pattern_current_avg: the current average attention pattern
    """
    # first get the attention pattern
    b = process_args_kwargs_output(args, kwargs, output)

    attn_pattern = b.data.detach().clone()  # (batch, num_heads,seq_len, seq_len)
    # attn_pattern = attn_pattern.to(torch.float32)
    num_heads = attn_pattern.size(1)

    token_indexes = [item for sublist in token_indexes for item in sublist]

    for head in range(num_heads):
        key = f"avg_pattern_L{layer}H{head}"
        if key not in attn_pattern_current_avg:
            attn_pattern_current_avg[key] = attn_pattern[:, head, token_indexes][
                :, :, token_indexes
            ]
        else:
            attn_pattern_current_avg[key] += (
                attn_pattern[:, head, token_indexes][:, :, token_indexes]
                - attn_pattern_current_avg[key]
            ) / (batch_idx + 1)
        attn_pattern_current_avg[key] = attn_pattern_current_avg[key]
        # var_key = f"M2_pattern_L{layer}H{head}"
        # if var_key not in attn_pattern_current_avg:
        #     attn_pattern_current_avg[var_key] = torch.zeros_like(attn_pattern[:, head])
        # attn_pattern_current_avg[var_key] = attn_pattern_current_avg[var_key] + (attn_pattern[:, head] - attn_pattern_current_avg[key]) * (attn_pattern[:, head] - attn_pattern_current_avg[var_key])

        if extract_avg_value:
            value_key = f"projected_value_L{layer}H{head}"
            try:
                values = cache[value_key]
            except KeyError:
                print(f"Values not found for {value_key}")
                return
            # get the attention pattern for the values
            value_norm = torch.norm(values, dim=-1)

            norm_matrix = (
                value_norm.unsqueeze(1).expand_as(attn_pattern[:, head]).transpose(1, 2)
            )

            norm_matrix = norm_matrix * attn_pattern[:, head]

            if value_key not in attn_pattern_current_avg:
                attn_pattern_current_avg[value_key] = norm_matrix[..., token_indexes, :]
            else:
                attn_pattern_current_avg[value_key] += (
                    norm_matrix[..., token_indexes, :]
                    - attn_pattern_current_avg[value_key]
                ) / (batch_idx + 1)

            # remove values from cache
            del cache[value_key]

avg_hook(module, args, kwargs, output, cache, cache_key, last_image_idx, end_image_idx)

It save the activations of the residual stream in the cache. It will save the activations in the cache (a global variable out the scope of the function)

Source code in easyroutine/interpretability/hooks.py
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
def avg_hook(
    module,
    args,
    kwargs,
    output,
    cache,
    cache_key,
    last_image_idx,
    end_image_idx,
):
    r"""
    It save the activations of the residual stream in the cache. It will save the activations in the cache (a global variable out the scope of the function)
    """
    b = process_args_kwargs_output(args, kwargs, output)

    img_avg = torch.mean(
        b.data.detach().clone()[:, 1 : last_image_idx + 1, :],
        dim=1,
    )
    text_avg = torch.mean(b.data.detach().clone()[:, end_image_idx:, :], dim=1)
    all_avg = torch.mean(b.data.detach().clone()[:, :, :], dim=1)

    cache[f"avg_{cache_key}"] = torch.cat(
        [img_avg.unsqueeze(1), text_avg.unsqueeze(1), all_avg.unsqueeze(1)], dim=1
    )

compute_statistics(tensor, dim=-1, keepdim=True, eps=1e-06)

Computes the mean, variance, and second moment of a given tensor along a specified dimension.

Parameters:

Name Type Description Default
tensor Tensor

Input tensor.

required
dim int

Dimension along which to compute statistics (default: -1).

-1
keepdim bool

Whether to keep the reduced dimension (default: True).

True
eps float

Small constant for numerical stability.

1e-06

Returns:

Name Type Description
tuple

(mean, variance, second_moment)

Source code in easyroutine/interpretability/hooks.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def compute_statistics(tensor, dim=-1, keepdim=True, eps=1e-6):
    """
    Computes the mean, variance, and second moment of a given tensor along a specified dimension.

    Args:
        tensor (torch.Tensor): Input tensor.
        dim (int): Dimension along which to compute statistics (default: -1).
        keepdim (bool): Whether to keep the reduced dimension (default: True).
        eps (float): Small constant for numerical stability.

    Returns:
        tuple: (mean, variance, second_moment)
    """
    mean = tensor.mean(dim=dim, keepdim=keepdim)  # Compute mean
    second_moment = tensor.pow(2).mean(
        dim=dim, keepdim=keepdim
    )  # Compute second moment
    variance = second_moment - mean.pow(2)  # Compute variance using E[X²] - (E[X])²

    return mean.squeeze(-1), variance.squeeze(-1), second_moment.squeeze(-1)

create_dynamic_hook(pyvene_hook, **kwargs)

DEPRECATED: pyvene is not used anymore. This function is used to create a dynamic hook. It is a wrapper around the pyvene_hook function.

Source code in easyroutine/interpretability/hooks.py
59
60
61
62
63
64
65
66
67
68
69
def create_dynamic_hook(pyvene_hook: Callable, **kwargs):
    r"""
    DEPRECATED: pyvene is not used anymore.
    This function is used to create a dynamic hook. It is a wrapper around the pyvene_hook function.
    """
    partial_hook = partial(pyvene_hook, **kwargs)

    def wrap(*args, **kwargs):
        return partial_hook(*args, **kwargs)

    return wrap

embed_hook(module, args, kwargs, output, token_indexes, cache, cache_key)

Hook function to extract the embeddings of the tokens. It will save the embeddings in the cache (a global variable out the scope of the function)

Source code in easyroutine/interpretability/hooks.py
84
85
86
87
88
89
90
91
92
def embed_hook(module, args, kwargs, output, token_indexes, cache, cache_key):
    r"""
    Hook function to extract the embeddings of the tokens. It will save the embeddings in the cache (a global variable out the scope of the function)
    """
    b = process_args_kwargs_output(args, kwargs, output)
    cache[cache_key] = []
    for token_index in token_indexes:
        cache[cache_key].append(b.data.detach().clone()[..., list(token_index)])
    cache[cache_key] = tuple(cache[cache_key])

input_embedding_hook(module, args, kwargs, output, cache, cache_key, token_indexes, keep_gradient=False, avg=False)

Hook to capture the output of the embedding layer, enable gradients, and store it in the cache.

Source code in easyroutine/interpretability/hooks.py
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
def input_embedding_hook(
    module, args, kwargs, output, cache, cache_key, token_indexes, keep_gradient: bool = False, avg: bool = False
):
    r"""
    Hook to capture the output of the embedding layer, enable gradients, and store it in the cache.
    """
    embeddings_tensor = process_args_kwargs_output(args, kwargs, output)

    if keep_gradient:
        # Enable gradient tracking for the embeddings tensor
        embeddings_tensor.requires_grad_(True).retain_grad()
        cache[cache_key] = embeddings_tensor # we slice in the end if keep gradient
        return restore_same_args_kwargs_output(embeddings_tensor, args, kwargs, output)  # Return the original (potentially modified in-place) output structure
    if avg:
        token_avgs = []
        for token_tuple in token_indexes:
            # Slice out the tokens specified by the tuple.
            token_slice = embeddings_tensor[:, list(token_tuple), :]
            # Average over the token dimension (dim=1) and keep that dimension.
            token_avg = torch.mean(token_slice, dim=1, keepdim=True)
            token_avgs.append(token_avg)
        cache[cache_key] = (
            torch.cat(token_avgs, dim=1)  # Store the tensor that's part of the graph
        )
    else:
        flatten_indexes = [item for tup in token_indexes for item in tup]
        cache[cache_key] = (
            embeddings_tensor[:,flatten_indexes,:]  # Store the tensor that's part of the graph
        )

    return (
        output  # Return the original (potentially modified in-place) output structure
    )

intervention_attn_mat_hook(module, args, kwargs, output, q_positions, k_positions, head, multiplication_value, patching_values=None, apply_softmax=False)

Hook function to ablate the tokens in the attention mask. It will set to 0 the value vector of the tokens to ablate

Source code in easyroutine/interpretability/hooks.py
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
def intervention_attn_mat_hook(
    module,
    args,
    kwargs,
    output,
    q_positions,
    k_positions,
    head,
    multiplication_value,
    patching_values: Optional[Union[str, torch.Tensor]] = None,
    apply_softmax: bool = False,
    # ablation_queries: pd.DataFrame,
):
    r"""
    Hook function to ablate the tokens in the attention
    mask. It will set to 0 the value vector of the
    tokens to ablate
    """
    # Get the shape of the attention matrix
    b = process_args_kwargs_output(args, kwargs, output)
    batch_size, num_heads, seq_len_q, seq_len_k = b.shape

    # Used during generation
    if seq_len_q < len(q_positions):
        q_positions = 0

    # Create boolean masks for queries and keys
    q_mask = torch.zeros(seq_len_q, dtype=torch.bool, device=b.device)
    q_mask[q_positions] = True  # Set positions to True

    k_mask = torch.zeros(seq_len_k, dtype=torch.bool, device=b.device)
    k_mask[k_positions] = True  # Set positions to TrueW

    # Create a 2D mask using outer product
    head_mask = torch.outer(q_mask, k_mask)  # Shape: (seq_len_q, seq_len_k)

    # Expand mask to match the dimensions of the attention matrix
    # Shape after expand: (batch_size, num_heads, seq_len_q, seq_len_k)
    # head_mask = (
    #     head_mask.unsqueeze(0).unsqueeze(0).expand(batch_size, num_heads, -1, -1)
    # )

    # select the head
    # head_mask = head_mask[:, head, :, :]

    if patching_values is None or patching_values == "ablation":
        logger.debug("No patching values provided, ablation will be performed")
        # Apply the ablation function directly to the attention matrix
        b[:, head, head_mask] = multiply_pattern(
            b[:, head, head_mask], multiplication_value
        )

    else:
        # Apply the patching values to the attention matrix
        logger.debug("Patching values provided, applying patching values")
        logger.debug(
            "Patching values shape: %s. It is expected to have shape seq_len x seq_len",
            patching_values.shape,
        )

        b[:, head, head_mask] = patching_values[head_mask]
    if apply_softmax:
        b[:, head] = torch.nn.functional.softmax(b[:, head], dim=-1)
    return b

intervention_heads_hook(module, args, kwargs, output, ablation_queries)

Hook function to ablate the heads in the attention mask. It will set to 0 the output of the heads to ablate

Source code in easyroutine/interpretability/hooks.py
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def intervention_heads_hook(
    module,
    args,
    kwargs,
    output,
    ablation_queries: pd.DataFrame,
):
    r"""
    Hook function to ablate the heads in the attention
    mask. It will set to 0 the output of the heads to
    ablate
    """
    b = process_args_kwargs_output(args, kwargs, output)
    attention_matrix = b.clone().data

    for head in ablation_queries["head"]:
        attention_matrix[0, head, :, :] = 0

    b.copy_(attention_matrix)
    return b

intervention_resid_hook(module, args, kwargs, output, token_indexes, patching_values=None)

Hook function to ablate the tokens in the residual stream. It will set to 0 the value vector of the tokens to ablate

Source code in easyroutine/interpretability/hooks.py
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def intervention_resid_hook(
    module,
    args,
    kwargs,
    output,
    token_indexes,
    patching_values: Optional[Union[str, torch.Tensor]] = None,
):
    r"""
    Hook function to ablate the tokens in the residual stream. It will set to 0 the value vector of the
    tokens to ablate
    """
    b = process_args_kwargs_output(args, kwargs, output)
    # detach b to avoid modifying the original tensor
    b = b.data.detach().clone()
    if patching_values is None or patching_values == "ablation":
        logger.debug(
            "No patching values provided, ablation will be performed on the residual stream"
        )
        b[..., token_indexes, :] = 0
    else:
        logger.debug(
            "Patching values provided, applying patching values to the residual stream"
        )
        b[..., list(token_indexes), :] = patching_values
    return restore_same_args_kwargs_output(b, args, kwargs, output)

multiply_pattern(tensor, multiplication_value)

Set the attention values to zero

Source code in easyroutine/interpretability/hooks.py
357
358
359
360
361
362
def multiply_pattern(tensor, multiplication_value):
    r"""
    Set the attention values to zero
    """
    # return torch.zeros_like(tensor) + multiplication_value
    return tensor * multiplication_value

projected_key_vectors_head(module, args, kwargs, output, layer, cache, token_indexes, num_attention_heads, num_key_value_heads, hidden_size, d_head, out_proj_weight, out_proj_bias, head='all', act_on_input=False, expand_head=True, avg=False)

Hook function to extract the key vectors of the heads and project them through the attention output matrix. This shows the contribution that keys in each position could have to the residual stream through the attention mechanism.

Like other hooks, it saves the activations in the cache.

Parameters:

Name Type Description Default
b

the input of the hook function (output of the key vectors)

required
layer

the layer of the model

required
head Union[str, int]

the head of the model. If "all" is passed, it will extract all the heads of the layer

'all'
expand_head bool

bool to expand the head dimension when extracting the keys vectors

True
Source code in easyroutine/interpretability/hooks.py
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
def projected_key_vectors_head(
    module,
    args,
    kwargs,
    output,
    layer,
    cache,
    token_indexes,
    num_attention_heads: int,
    num_key_value_heads: int,
    hidden_size: int,
    d_head: int,
    out_proj_weight,
    out_proj_bias,
    head: Union[str, int] = "all",
    act_on_input=False,
    expand_head: bool = True,
    avg=False,
):
    r"""
    Hook function to extract the key vectors of the heads and project them through the attention output matrix.
    This shows the contribution that keys in each position could have to the residual stream through the attention mechanism.

    Like other hooks, it saves the activations in the cache.

    Args:
        b: the input of the hook function (output of the key vectors)
        layer: the layer of the model
        head: the head of the model. If "all" is passed, it will extract all the heads of the layer
        expand_head: bool to expand the head dimension when extracting the keys vectors
    """
    # Get the key vectors
    b = process_args_kwargs_output(args, kwargs, output)

    keys = b.data.detach().clone()  # (batch, num_heads, seq_len, head_dim)

    # Reshape the key vectors to have a separate dimension for the different heads
    keys = rearrange(
        keys,
        "batch seq_len (num_key_value_heads d_heads) -> batch num_key_value_heads seq_len d_heads",
        num_key_value_heads=num_key_value_heads,
        d_heads=d_head,
    )

    # If needed, repeat KV heads to match attention heads (for grouped query attention)
    keys = repeat_kv(keys, num_attention_heads // num_key_value_heads)

    keys = rearrange(
        keys,
        "batch num_head seq_len d_model -> batch seq_len num_head d_model",
    )

    # Reshape out_proj_weight to get the blocks for each head
    out_proj_weight = out_proj_weight.t().view(
        num_attention_heads,
        d_head,
        hidden_size,
    )

    # Apply bias if present
    if out_proj_bias is not None:
        out_proj_bias = out_proj_bias.view(1, 1, 1, hidden_size)

    # Apply the projection for each head
    projected_keys = einsum(
        keys,
        out_proj_weight,
        "batch seq_len num_head d_head, num_head d_head d_model -> batch seq_len num_head d_model",
    )
    if out_proj_bias is not None:
        projected_keys = projected_keys + out_proj_bias

    # Rearrange the tensor to have dimensions that we prefer
    projected_keys = rearrange(
        projected_keys,
        "batch seq_len num_head d_model -> batch num_head seq_len d_model",
    )

    # Process token indices
    if avg:
        # For each tuple, slice out the tokens and average over them
        token_avgs = []
        for token_tuple in token_indexes:
            token_slice = projected_keys[..., list(token_tuple), :]
            token_avg = torch.mean(token_slice, dim=-2, keepdim=True)
            token_avgs.append(token_avg)
        projected_keys = torch.cat(token_avgs, dim=-2)
    else:
        flatten_indexes = [item for tup in token_indexes for item in tup]
        projected_keys = projected_keys[..., flatten_indexes, :]

    # Save to cache based on selected heads
    if head == "all":
        for head_idx in range(num_attention_heads):
            cache[f"projected_key_L{layer}H{head_idx}"] = projected_keys[:, head_idx]
    else:
        cache[f"projected_key_L{layer}H{head}"] = projected_keys[:, int(head)]

projected_query_vectors_head(module, args, kwargs, output, layer, cache, token_indexes, num_attention_heads, num_key_value_heads, hidden_size, d_head, out_proj_weight, out_proj_bias, head='all', act_on_input=False, expand_head=True, avg=False)

Hook function to extract the query vectors of the heads and project them through the attention output matrix. This shows the contribution that queries in each position could have to the residual stream through the attention mechanism.

Like other hooks, it saves the activations in the cache.

Parameters:

Name Type Description Default
b

the input of the hook function (output of the query vectors)

required
layer

the layer of the model

required
head Union[str, int]

the head of the model. If "all" is passed, it will extract all the heads of the layer

'all'
expand_head bool

bool to expand the head dimension when extracting the query vectors

True
Source code in easyroutine/interpretability/hooks.py
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
def projected_query_vectors_head(
    module,
    args,
    kwargs,
    output,
    layer,
    cache,
    token_indexes,
    num_attention_heads: int,
    num_key_value_heads: int,
    hidden_size: int,
    d_head: int,
    out_proj_weight,
    out_proj_bias,
    head: Union[str, int] = "all",
    act_on_input=False,
    expand_head: bool = True,
    avg=False,
):
    r"""
    Hook function to extract the query vectors of the heads and project them through the attention output matrix.
    This shows the contribution that queries in each position could have to the residual stream through the attention mechanism.

    Like other hooks, it saves the activations in the cache.

    Args:
        b: the input of the hook function (output of the query vectors)
        layer: the layer of the model
        head: the head of the model. If "all" is passed, it will extract all the heads of the layer
        expand_head: bool to expand the head dimension when extracting the query vectors
    """
    # Get the query vectors
    b = process_args_kwargs_output(args, kwargs, output)

    queries = b.data.detach().clone()  # (batch, seq_len, num_heads*d_head)

    # Reshape the query vectors to have a separate dimension for the heads
    queries = rearrange(
        queries,
        "batch seq_len (num_attention_heads d_heads) -> batch num_attention_heads seq_len d_heads",
        num_attention_heads=num_attention_heads,
        d_heads=d_head,
    )

    queries = rearrange(
        queries,
        "batch num_head seq_len d_model -> batch seq_len num_head d_model",
    )

    # Reshape out_proj_weight to get the blocks for each head
    out_proj_weight = out_proj_weight.t().view(
        num_attention_heads,
        d_head,
        hidden_size,
    )

    # Apply bias if present
    if out_proj_bias is not None:
        out_proj_bias = out_proj_bias.view(1, 1, 1, hidden_size)

    # Apply the projection for each head
    projected_queries = einsum(
        queries,
        out_proj_weight,
        "batch seq_len num_head d_head, num_head d_head d_model -> batch seq_len num_head d_model",
    )
    if out_proj_bias is not None:
        projected_queries = projected_queries + out_proj_bias

    # Rearrange the tensor to have dimensions that we prefer
    projected_queries = rearrange(
        projected_queries,
        "batch seq_len num_head d_model -> batch num_head seq_len d_model",
    )

    # Process token indices
    if avg:
        # For each tuple, slice out the tokens and average over them
        token_avgs = []
        for token_tuple in token_indexes:
            token_slice = projected_queries[..., list(token_tuple), :]
            token_avg = torch.mean(token_slice, dim=-2, keepdim=True)
            token_avgs.append(token_avg)
        projected_queries = torch.cat(token_avgs, dim=-2)
    else:
        flatten_indexes = [item for tup in token_indexes for item in tup]
        projected_queries = projected_queries[..., flatten_indexes, :]

    # Save to cache based on selected heads
    if head == "all":
        for head_idx in range(num_attention_heads):
            cache[f"projected_query_L{layer}H{head_idx}"] = projected_queries[
                :, head_idx
            ]
    else:
        cache[f"projected_query_L{layer}H{head}"] = projected_queries[:, int(head)]

projected_value_vectors_head(module, args, kwargs, output, layer, cache, token_indexes, num_attention_heads, num_key_value_heads, hidden_size, d_head, out_proj_weight, out_proj_bias, head='all', act_on_input=False, expand_head=True, avg=False)

Hook function to extract the values vectors of the heads. It will extract the values vectors and then project them with the final W_O projection As the other hooks, it will save the activations in the cache (a global variable out the scope of the function)

Parameters:

Name Type Description Default
b

the input of the hook function. It's the output of the values vectors of the heads

required
s

the state of the hook function. It's the state of the model

required
layer

the layer of the model

required
head Union[str, int]

the head of the model. If "all" is passed, it will extract all the heads of the layer

'all'
expand_head bool

bool to expand the head dimension when extracting the values vectors and the attention pattern. If true, in the cache we will have a key for each head, like "value_L0H0", "value_L0H1", ... while if False, we will have only one key for each layer, like "value_L0" and the dimension of the head will be taken into account in the tensor.

True
Source code in easyroutine/interpretability/hooks.py
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
def projected_value_vectors_head(
    module,
    args,
    kwargs,
    output,
    layer,
    cache,
    token_indexes,
    num_attention_heads: int,
    num_key_value_heads: int,
    hidden_size: int,
    d_head: int,
    out_proj_weight,
    out_proj_bias,
    head: Union[str, int] = "all",
    act_on_input=False,
    expand_head: bool = True,
    avg=False,
):
    r"""
    Hook function to extract the values vectors of the heads. It will extract the values vectors and then project them with the final W_O projection
    As the other hooks, it will save the activations in the cache (a global variable out the scope of the function)

    Args:
        b: the input of the hook function. It's the output of the values vectors of the heads
        s: the state of the hook function. It's the state of the model
        layer: the layer of the model
        head: the head of the model. If "all" is passed, it will extract all the heads of the layer
        expand_head: bool to expand the head dimension when extracting the values vectors and the attention pattern. If true, in the cache we will have a key for each head, like "value_L0H0", "value_L0H1", ...
                        while if False, we will have only one key for each layer, like "value_L0" and the dimension of the head will be taken into account in the tensor.

    """
    # first get the values vectors
    b = process_args_kwargs_output(args, kwargs, output)

    values = b.data.detach().clone()  # (batch, num_heads,seq_len, head_dim)

    # reshape the values vectors to have a separate dimension for the different heads
    values = rearrange(
        values,
        "batch seq_len (num_key_value_heads d_heads) -> batch num_key_value_heads seq_len d_heads",
        num_key_value_heads=num_key_value_heads,
        d_heads=d_head,
    )

    #        "batch seq_len (num_key_value_heads d_heads) -> batch seq_len num_key_value_heads d_heads",

    values = repeat_kv(values, num_attention_heads // num_key_value_heads)

    values = rearrange(
        values,
        "batch num_head seq_len d_model -> batch seq_len num_head d_model",
    )

    # reshape in order to get the blocks for each head
    out_proj_weight = out_proj_weight.t().view(
        num_attention_heads,
        d_head,
        hidden_size,
    )

    # apply bias if present (No in Chameleon)
    if out_proj_bias is not None:
        out_proj_bias = out_proj_bias.view(1, 1, 1, hidden_size)

    # apply the projection for each head
    projected_values = einsum(
        values,
        out_proj_weight,
        "batch seq_len num_head d_head, num_head d_head d_model -> batch seq_len num_head d_model",
    )
    if out_proj_bias is not None:
        projected_values = projected_values + out_proj_bias

    # rearrange the tensor to have dimension that we like more
    projected_values = rearrange(
        projected_values,
        "batch seq_len num_head d_model -> batch num_head seq_len d_model",
    )

    # slice for token index
    # Assume projected_values has shape [batch, num_heads, tokens, d_model]
    if avg:
        # For each tuple, slice the tokens along dimension -2 and average over that token slice.
        token_avgs = []
        for token_tuple in token_indexes:
            # Slice out the tokens for this tuple.
            # Using ellipsis ensures we index the last two dimensions correctly.
            token_slice = projected_values[..., list(token_tuple), :]
            # Average over the token dimension (which is -2) while keeping that dimension.
            token_avg = torch.mean(token_slice, dim=-2, keepdim=True)
            token_avgs.append(token_avg)
        # Concatenate the averaged slices along the token dimension (-2).
        projected_values = torch.cat(token_avgs, dim=-2)
    else:
        # Flatten the list of token tuples into a single list of token indices.
        flatten_indexes = [item for tup in token_indexes for item in tup]
        projected_values = projected_values[..., flatten_indexes, :]

    # Post-process the value vectors by selecting heads.
    if head == "all":
        for head_idx in range(num_attention_heads):
            cache[f"projected_value_L{layer}H{head_idx}"] = projected_values[
                :, head_idx
            ]
    else:
        cache[f"projected_value_L{layer}H{head}"] = projected_values[:, int(head)]

query_key_value_hook(module, args, kwargs, output, cache, cache_key, token_indexes, layer, head_dim, num_key_value_groups, head='all', avg=False)

Same as save_resid_hook but for the query, key and value vectors, it just have a reshape to have the head dimension.

Source code in easyroutine/interpretability/hooks.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def query_key_value_hook(
    module,
    args,
    kwargs,
    output,
    cache: ActivationCache,
    cache_key,
    token_indexes,
    layer,
    head_dim,
    num_key_value_groups: int,
    head: Union[str, int] = "all",
    avg: bool = False,
):
    r"""
    Same as save_resid_hook but for the query, key and value vectors, it just have a reshape to have the head dimension.
    """
    b = process_args_kwargs_output(args, kwargs, output)
    input_shape = b.shape[:-1]
    hidden_shape = (*input_shape, -1, head_dim)
    b = b.view(hidden_shape).transpose(1, 2)
    # cache[cache_key] = b.data.detach().clone()[..., token_index, :]

    info_string = "Shape: batch seq_len d_head"

    heads = [idx for idx in range(b.size(1))] if head == "all" else [head]
    for head_idx in heads:
        # Compute the group index for keys/values if needed.
        group_idx = head_idx // (b.size(1) // num_key_value_groups)
        # Decide whether to use group_idx or head_idx based on cache_key.
        if "values_" in cache_key or "keys_" in cache_key:
            # Select the slice corresponding to the group index.
            tensor_slice = b.data.detach().clone()[:, group_idx, ...]
        else:
            # Use the head index directly.
            tensor_slice = b.data.detach().clone()[:, head_idx, ...]

        # Process the token indexes.
        if avg:
            # For each token tuple, average over the tokens.
            # Note: After slicing, the token dimension is the first dimension of tensor_slice,
            # i.e. tensor_slice has shape (batch, tokens, d_head) so we average along dim=1.
            tokens_avgs = []
            for token_tuple in token_indexes:
                # Slice tokens using the token_tuple.
                token_subslice = tensor_slice[:, list(token_tuple), :]
                # Average over the token dimension (dim=1) and keep that dimension.
                token_avg = torch.mean(token_subslice, dim=1, keepdim=True)
                tokens_avgs.append(token_avg)
            # Concatenate the averages along the token dimension (dim=1).
            processed_tokens = torch.cat(tokens_avgs, dim=1)
        else:
            # Flatten the token indexes from the list of tuples.
            flatten_indexes = [item for tup in token_indexes for item in tup]
            processed_tokens = tensor_slice[:, flatten_indexes, :]

        # Build a unique key for the cache by including layer and head information.
        key = f"{cache_key}L{layer}H{head_idx}"
        cache.add_with_info(key, processed_tokens, info_string)

restore_same_args_kwargs_output(b, args, kwargs, output)

Inverse of process_args_kwargs_output

Source code in easyroutine/interpretability/hooks.py
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def restore_same_args_kwargs_output(b, args, kwargs, output):
    """
    Inverse of process_args_kwargs_output
    """

    if output is not None:
        if isinstance(output, tuple):
            b = (b,) + output[1:]
    if output is None:
        if len(args) > 0:
            args = (b,) + args[1:]
        else:
            candidate_keys = ["hidden_states"]
            for key in candidate_keys:
                if key in kwargs:
                    kwargs[key] = b
                    break
        return args, kwargs
    return b  # type:ignore

save_resid_hook(module, args, kwargs, output, cache, cache_key, token_indexes, avg=False)

It save the activations of the residual stream in the cache. It will save the activations in the cache (a global variable out the scope of the function)

Source code in easyroutine/interpretability/hooks.py
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def save_resid_hook(
    module,
    args,
    kwargs,
    output,
    cache: ActivationCache,
    cache_key,
    token_indexes,
    avg: bool = False,
):
    r"""
    It save the activations of the residual stream in the cache. It will save the activations in the cache (a global variable out the scope of the function)
    """
    b = process_args_kwargs_output(args, kwargs, output)

    # slice the tensor to get the activations of the token we want to extract
    if avg:
        token_avgs = []
        for token_index in token_indexes:
            slice_ = b.data.detach().clone()[..., list(token_index), :]
            token_avgs.append(torch.mean(slice_, dim=-2, keepdim=True))

        # cache[cache_key] = torch.cat(token_avgs, dim=-2)
        cache.add_with_info(
            cache_key,
            torch.cat(token_avgs, dim=-2),
            "Shape: batch avg_over_target_token_position, d_model",
        )

    else:
        flatten_indexes = [item for sublist in token_indexes for item in sublist]
        cache[cache_key] = b.data.detach().clone()[..., flatten_indexes, :]