Skip to content

Interventions

Intervention dataclass

User interface to define the intervention

Parameters:

Name Type Description Default
- type

Literal["columns", "rows", "full", "block-img-txt", "block-img-img", "keep-self-attn"]: The type of intervention to be applied. "columns" will intervene on the columns of the attention matrix, "rows" will intervene on the rows of the attention matrix, "full" will intervene on the full attention matrix, "block-img-txt" will intervene on the block of image and text, "block-img-img" will intervene on the block of image and image, "keep-self-attn" will keep the self-attention of the model.

required
- activation

str: The activation to be intervened. Should have the same format as returned from cache

required
- token_positions

List[Union[str, int]]: The positions of the tokens that will be intervened or ablated

required
- patching_values

Optional[Union[torch.Tensor, Literal["ablation"]]]: The values to be substituted during the intervention. If None or "ablation" the values will be set to zero.

required
Source code in easyroutine/interpretability/interventions.py
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
@dataclass
class Intervention:
    """
    User interface to define the intervention

    Arguments:
        - type: Literal["columns", "rows", "full", "block-img-txt", "block-img-img", "keep-self-attn"]: The type of intervention to be applied. "columns" will intervene on the columns of the attention matrix, "rows" will intervene on the rows of the attention matrix, "full" will intervene on the full attention matrix, "block-img-txt" will intervene on the block of image and text, "block-img-img" will intervene on the block of image and image, "keep-self-attn" will keep the self-attention of the model.
        - activation: str: The activation to be intervened. Should have the same format as returned from cache
        - token_positions: List[Union[str, int]]: The positions of the tokens that will be intervened or ablated
        - patching_values: Optional[Union[torch.Tensor, Literal["ablation"]]]: The values to be substituted during the intervention. If None or "ablation" the values will be set to zero.
    """

    type: Literal[
        "columns",
        "rows",
        "full",
        "block-img-txt",
        "block-img-img",
        "keep-self-attn",
        "grid",
        "columns_pre_softmax",
        "rows_pre_softmax",
        "grid_pre_softmax"
    ]
    activation: str
    token_positions: Union[List[Union[str, int]], Tuple[List[str], List[str]]]
    patching_values: Optional[Union[torch.Tensor, Literal["ablation"]]] = None
    multiplication_value: float = 0.0
    apply_softmax: bool = False

    def __getitem__(self, key):
        return getattr(self, key)

InterventionConfig

Bases: BaseModel

Essential information to apply the intervention

Parameters:

Name Type Description Default
- hook_name

str: The name of the hook to be applied, should be the same as model_config

required
- hook_func

Any: The function that will be applied to the hook

required
- apply_intervention_func

Any: The function that is called to do the preliminary computation before attaching the hook to the model. This function is handled by the InterventionManager and is a pre-hook function. It useful since it will process the intervention data and return a clean hook_func that can be attached to the model.

required
Source code in easyroutine/interpretability/interventions.py
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class InterventionConfig(BaseModel):
    """
    Essential information to apply the intervention

    Arguments:
        - hook_name: str: The name of the hook to be applied, should be the same as model_config
        - hook_func: Any: The function that will be applied to the hook
        - apply_intervention_func: Any: The function that is called to do the preliminary computation before attaching the hook to the model. This function is handled by the InterventionManager and is a pre-hook function. It useful since it will process the intervention data and return a clean hook_func that can be attached to the model.
    """

    hook_name: str
    hook_func: Any = None
    apply_intervention_func: Any = None

    def __getitem__(self, key):
        return getattr(self, key)

InterventionManager

Class to manage the interventions (ablation, patching, etc) on the model

User should define intervention object

Parameters:

Name Type Description Default
- model_config

ModelConfig: The configuration of the model

required
Source code in easyroutine/interpretability/interventions.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
class InterventionManager:
    """
    Class to manage the interventions (ablation, patching, etc) on the model

    User should define intervention object

    Arguments:
        - model_config: ModelConfig: The configuration of the model
    """

    def __init__(
        self,
        model_config: ModelConfig,
    ):
        self.model_config = model_config

    def create_intervention_hooks(
        self, interventions: List[Intervention], token_dict: dict
    ):
        """
        Function that given a list of interventions, returns a list of hooks to be applied to the model.

        Arguments:
            - interventions: List[Intervention]. The list of interventions to be applied to the model
            - token_dict: dict. The dictionary containing the token positions in the model

        Returns:
            - List[Dict[str, Any]]: The list of hooks to be applied to the model
        """
        self._register_interventions()  # Register the interventions. Here to support dynamical model_config changes

        hooks = []
        for intervention in interventions:
            type_str = intervention["activation"]
            intervention_type = intervention["type"]

            # Find the matching regex key from supported_interventions
            matched_config = None
            for pattern, config_dict in self.supported_interventions.items():
                if pattern.match(type_str):
                    matched_config = config_dict
                    break
            if matched_config is None:
                raise ValueError(
                    f"No supported intervention found for activation type {type_str}"
                )

            # Check if the intervention_type is supported for that regex key.
            if intervention_type not in matched_config:
                raise ValueError(
                    f"Intervention type {intervention_type} is not supported for activation {type_str}"
                )

            intervention_config = matched_config[intervention_type]
            hook = intervention_config.apply_intervention_func(
                hook_name=intervention_config.hook_name,
                intervention=intervention,
                token_dict=token_dict,
            )
            hooks.append(hook)
        return hooks

    def _register_interventions(self):
        """
        Function to register the interventions supported by the model.
        """
        self.supported_interventions = {
            re.compile(r"pattern_L\d+H\d+"): {
                "columns": InterventionConfig(
                    hook_name=self.model_config.attn_matrix_hook_name,
                    hook_func=intervention_attn_mat_hook,
                    apply_intervention_func=columns_attn_mat,
                ),
                "rows": InterventionConfig(
                    hook_name=self.model_config.attn_matrix_hook_name,
                    hook_func=intervention_attn_mat_hook,
                    apply_intervention_func=rows_attn_mat,
                ),
                "grid": InterventionConfig(
                    hook_name=self.model_config.attn_matrix_hook_name,
                    hook_func=intervention_attn_mat_hook,
                    apply_intervention_func=grid_attn_mat,
                ),
                "block_img_txt": InterventionConfig(
                    hook_name=self.model_config.attn_matrix_hook_name,
                    hook_func=intervention_attn_mat_hook,
                    apply_intervention_func=block_img_txt_attn_mat,
                ),
                "colums_pre_softmax": InterventionConfig(
                    hook_name=self.model_config.attn_matrix_pre_softmax_hook_name,
                    hook_func=intervention_attn_mat_hook,
                    apply_intervention_func=columns_attn_mat,
                ),
                "rows_pre_softmax": InterventionConfig(
                    hook_name=self.model_config.attn_matrix_pre_softmax_hook_name,
                    hook_func=intervention_attn_mat_hook,
                    apply_intervention_func=rows_attn_mat,
                ),
                "grid_pre_softmax": InterventionConfig(
                    hook_name=self.model_config.attn_matrix_pre_softmax_hook_name,
                    hook_func=intervention_attn_mat_hook,
                    apply_intervention_func=grid_attn_mat,
                ),
                "block_img_txt_pre_softmax": InterventionConfig(
                    hook_name=self.model_config.attn_matrix_pre_softmax_hook_name,
                    hook_func=intervention_attn_mat_hook,
                    apply_intervention_func=block_img_txt_attn_mat,
                ),
            },
            # Residual stream interventions
            re.compile(r"resid_out_\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.residual_stream_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            re.compile(r"resid_in_\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.residual_stream_input_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            re.compile(r"resid_mid_\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.intermediate_stream_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            # Attention input and output interventions
            re.compile(r"attn_in_\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.attn_in_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            re.compile(r"attn_out_\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.attn_out_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            # MLP output interventions
            re.compile(r"mlp_out_\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.mlp_out_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            # Head component interventions
            re.compile(r"values_L\d+H\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.head_value_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            re.compile(r"keys_L\d+H\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.head_key_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            re.compile(r"queries_L\d+H\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.head_query_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            # Projected vectors interventions
            re.compile(r"projected_value_L\d+H\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.head_value_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            re.compile(r"projected_key_L\d+H\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.head_key_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            re.compile(r"projected_query_L\d+H\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.head_query_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
            # Head output interventions
            re.compile(r"head_out_L\d+H\d+"): {
                "full": InterventionConfig(
                    hook_name=self.model_config.attn_o_proj_input_hook_name,
                    hook_func=intervention_resid_hook,
                    apply_intervention_func=intervention_resid_full,
                )
            },
        }

create_intervention_hooks(interventions, token_dict)

Function that given a list of interventions, returns a list of hooks to be applied to the model.

Parameters:

Name Type Description Default
- interventions

List[Intervention]. The list of interventions to be applied to the model

required
- token_dict

dict. The dictionary containing the token positions in the model

required

Returns:

Type Description
  • List[Dict[str, Any]]: The list of hooks to be applied to the model
Source code in easyroutine/interpretability/interventions.py
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
def create_intervention_hooks(
    self, interventions: List[Intervention], token_dict: dict
):
    """
    Function that given a list of interventions, returns a list of hooks to be applied to the model.

    Arguments:
        - interventions: List[Intervention]. The list of interventions to be applied to the model
        - token_dict: dict. The dictionary containing the token positions in the model

    Returns:
        - List[Dict[str, Any]]: The list of hooks to be applied to the model
    """
    self._register_interventions()  # Register the interventions. Here to support dynamical model_config changes

    hooks = []
    for intervention in interventions:
        type_str = intervention["activation"]
        intervention_type = intervention["type"]

        # Find the matching regex key from supported_interventions
        matched_config = None
        for pattern, config_dict in self.supported_interventions.items():
            if pattern.match(type_str):
                matched_config = config_dict
                break
        if matched_config is None:
            raise ValueError(
                f"No supported intervention found for activation type {type_str}"
            )

        # Check if the intervention_type is supported for that regex key.
        if intervention_type not in matched_config:
            raise ValueError(
                f"Intervention type {intervention_type} is not supported for activation {type_str}"
            )

        intervention_config = matched_config[intervention_type]
        hook = intervention_config.apply_intervention_func(
            hook_name=intervention_config.hook_name,
            intervention=intervention,
            token_dict=token_dict,
        )
        hooks.append(hook)
    return hooks

columns_attn_mat(hook_name, intervention, token_dict)

Pre-Hook function to compute the columns to be intervened in the attention matrix.

Source code in easyroutine/interpretability/interventions.py
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
def columns_attn_mat(hook_name, intervention: Intervention, token_dict):
    """
    Pre-Hook function to compute the columns to be intervened in the attention matrix.
    """
    # compute the pre-hooks information and return the hook_func
    keys_intervention_token_position = []
    for token in intervention.token_positions:
        keys_intervention_token_position.extend(token_dict[token])

    queries_token_positions = [q for q in token_dict["all"]]
    try:
        layer = int(re.search(r"L(\d+)", intervention.activation).group(1))
        head = int(re.search(r"H(\d+)", intervention.activation).group(1))
    except AttributeError:
        raise ValueError(
            f"Activation {intervention['activation']} is not in the format pattern_L\d+H\d+"
        )

    return {
        "component": hook_name.format(layer),
        "intervention": partial(
            intervention_attn_mat_hook,
            q_positions=queries_token_positions,
            k_positions=keys_intervention_token_position,
            patching_values=intervention.patching_values,
            head=head,
            multiplication_value=intervention.multiplication_value,
            apply_softmax=intervention.apply_softmax,
        ),
    }

rows_attn_mat(hook_name, intervention, token_dict)

Pre-Hook function to compute the columns to be intervened in the attention matrix.

Source code in easyroutine/interpretability/interventions.py
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def rows_attn_mat(hook_name, intervention: Intervention, token_dict):
    """
    Pre-Hook function to compute the columns to be intervened in the attention matrix.
    """
    # compute the pre-hooks information and return the hook_func
    queries_token_positions = []
    for token in intervention.token_positions:
        queries_token_positions.extend(token_dict[token])

    keys_token_positions = [k for k in token_dict["all"]]
    try:
        layer = int(re.search(r"L(\d+)", intervention.activation).group(1))
        head = int(re.search(r"H(\d+)", intervention.activation).group(1))
    except AttributeError:
        raise ValueError(
            f"Activation {intervention['activation']} is not in the format pattern_L\d+H\d+"
        )

    return {
        "component": hook_name.format(layer),
        "intervention": partial(
            intervention_attn_mat_hook,
            q_positions=queries_token_positions,
            k_positions=keys_token_positions,
            patching_values=intervention.patching_values,
            head=head,
            multiplication_value=intervention.multiplication_value,
            apply_softmax=intervention.apply_softmax,
        ),
    }