Token index
TokenIndex
TokenIndex is one of the core class of the interpretability module. It is used to find the right indexes that correspond to the tokens in the input of the model. In this way we are able to extract the right hidden states and attention weights, based on the tokens we are interested in. It support mixed modalities inputs, with both text and images.
Source code in easyroutine/interpretability/token_index.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
__init__(model_name, split_positions=None, split_tokens=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
str (required): the name of the model |
required |
split_positions
|
Optional[List[int]]
|
List[int] (optional): a list of integers that represent the positions where to split the tokens. |
None
|
split_tokens
|
Optional[List[str]]
|
List[str] (optional): a list of strings that represent the tokens where to split the tokens. |
None
|
The split_positions and split_tokens are mutually exclusive. The idea of the split is the following. Immagine to have an input string of tokens like this: ["I", "love", "cats", "and", "dogs". "What", "about", "you?"] Then, i want to extract/ablate/intervene on the second sentence. I can do it by specifying the split_positions=[5] or split_tokens=["What"]. In this way, the tokens will be split in two groups: ["I", "love", "cats", "and"] and ["dogs", "What", "about", "you?"] with names "position-group-0" and "position-group-1".
Source code in easyroutine/interpretability/token_index.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
get_token_index(tokens, string_tokens, return_type='list')
Main interface to get the indexes of the tokens in the input string tokens. Args: tokens: List[str] (required): a list of strings that represent the tokens we are interested in. string_tokens: List[str] (required): a list of strings that represent the input tokens. return_type: Literal["list", "int", "dict"] (optional): the type of the return value. If "list" it returns a list of integers, if "int" it returns an integer, if "dict" it returns a dictionary.
Returns:
Name | Type | Description |
---|---|---|
tokens_positions |
Union[List[int], Dict, Tuple[List[int], Dict]]
|
Union[List[int], int, Dict]: the indexes of the tokens in the input string tokens in the format specified by return_type. |
Supported tokens
last
: the last token of the input sequencelast-2
: the second last token of the input sequencelast-4
: the fourth last token of the input sequencelast-image
: the last token of the image sequenceend-image
: the end token of the image sequenceall-text
: all the tokens of the text sequenceall
: all the tokens of the input sequenceall-image
: all the tokens of the image sequencespecial
: special list of tokens based on the modelrandom-text
: a random token from the text sequencerandom-image
: a random token from the image sequencerandom-text-n
: n random tokens from the text sequencerandom-image-n
: n random tokens from the image sequenceposition-group-i
: the i-th group of tokens based on the split_positions or split_tokensrandom-position-group-i
: a random token from the i-th group of tokens based on the split_positions or split_tokens
Examples:
>>> string_tokens = ["start-image", "img1", "img2", "end-image", I", "love", "cats", "and", "dogs", "What", "about", "you?"]
>>> tokens = ["end-image", "all-text", "last", "position-group-1", "position-group-2"]
>>> TokenIndex("facebook/Chameleon-7b", split_tokens = ["cats", "dogs"]).get_token_index(tokens, string_tokens, return_type="dict")
{'end-image': [3], 'all-text': [4, 5, 6, 7, 8, 9, 10, 11], 'last': [-1], "position-group-1": [7,8], "position-group-2": [9, 10, 11]}
Source code in easyroutine/interpretability/token_index.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|